Sains Malaysiana 52(5)(2023): 1497-1511

http://doi.org/10.17576/jsm-2023-5205-13

 

 

The Impact of Bisphenol A Exposure during Pregnancy on the Heart of Mother and Fetal Rats

(Kesan Pendedahan Bisfenol A kepada Hati Ibu dan Fetus Tikus semasa Bunting)

 

ZATILFARIHIAH RASDI1, ROZIANA KAMALUDIN2, SITI HAMIMAH SHEIKH ABDUL KADIR3,4,*, MOHD DANIAL MOHD EFENDY GOON3,4, JESMINE KHAN3, SHARANIZA AB. RAHIM3 & MOHD HAFIZ DZARFAN OTHMAN2

 

1Centre of Preclinical Sciences Studies, Faculty of Dentistry, Universiti Teknologi MARA, Cawangan Selangor, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia

2Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia

3Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Cawangan Selangor, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia

4Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM), Universiti Teknologi MARA, Cawangan Selangor, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 6 September 2022/Diterima: 29 Mac 2023

 

Abstract

In utero bisphenol A (BPA) exposure has been reported to increase the risk of cardiovascular disease (CVD) in adult life. Thus, this study aimed to investigate the impact of in utero BPA exposure on proteins expression related to cardiac function in heart of rat foetuses (Rattus norvegicus). In here, pregnant rats were divided into tween-80 (vehicle control), 0.05 mg/mL and 0.2 mg/mL BPA via drinking water for 19 days: from pregnancy day 2 till 21. Caesarean section was conducted on pregnancy day 21 to collect plasma and heart of both mother and foetuses. BPA-exposed pregnant rats showed significant increase in blood pressure (BP) and reduction in glycogen content (p<0.05) in comparison to control pregnant rats. Remarkably, reduced expression of cardiac troponin I (cTnI) and redistribution of alpha fetoprotein (AFP) expression were in foetus of BPA-exposed mother in comparison with foetus of control mother. Hypoxia induced factor-1 alpha (HIF-1α) expression was elevated in BPA-exposed foetal heart compared to the control. The findings in here suggest the risk of in utero BPA exposure on both foetus and mother, which may increase the risk of CVD in later life by altering the expression of protein crucial for heart development and function.

 

Keywords: Bisphenol A; cardiovascular disease; foetus; prenatal; protein expression

 

Abstrak

Pendedahan bisfenol A (BPA) in utero dilaporkan mampu meningkatkan risiko penyakit kardiovaskular (CVD). Penyelidikan ini dijalankan untuk mengkaji impak in utero apabila didedah kepada BPA dari segi ekspresi protein berkait dengan fungsi kardiak dalam jantung fetus tikus (Rattus norvegicus). Tikus bunting telah diberi tween-80 (kawalan pembawa), 0.05 mg/mL atau 0.2 mg/mL BPA melalui air minuman selama 19 hari; dari hari kedua bunting hingga hari ke 21. Pembedahan Caesarean dijalankan pada hari bunting ke-21 untuk memperoleh plasma dan jantung daripada fetus dan ibu tikus. Tikus bunting terdedah kepada BPA menunjukkan kenaikan tekanan darah dan penurunan kandungan glikogen yang ketara (p<0.05) berbanding kumpulan kawalan tikus bunting. Didapati ekspresi aruhan hipoksia faktor-1 alfa (HIF-1α) meningkat dalam jantung fetus yang terdedah dengan BPA berbanding kumpulan kawalan. Hasil kajian menunjukkan risiko pendedahan BPA dalam rahim ke atas fetus dan ibu tikus boleh meningkatkan risiko penyakit jantung terutamanya dengan peningkatan umur melalui peningkatan ekspresi protein yang penting dalam perkembangan dan fungsi jantung.

 

Kata kunci: Bisfenol A; ekspresi protein; fetus; penyakit kardiovaskular; pranatal

 

RUJUKAN

Adigun, O.O., Yarrarapu, S.N.S., Zubair, M. & Khetarpal, S. 2019. Alpha Fetoprotein. StatPearls. pp. 8-11. http://www.ncbi.nlm.nih.gov/pubmed/28613501

Allport, S.A., Kikah, N., Saif, N.A., Ekokobe, F. & Atem, F.D. 2016. Parental age of onset of cardiovascular disease as a predictor for offspring age of onset of cardiovascular disease. PLoS ONE 11(12): 1-12. https://doi.org/10.1371/journal.pone.0163334

Bae, S., Kim, J.H., Lim, Y., Park, H.Y. & Hong, Y. 2012. Associations of bisphenol A exposure with heart rate variability and blood pressure. Hypertension 60: 786-793.

https://www.ahajournals.org/doi/10.1161/hypertensionaha.112.197715

Barker, D.J. & Osmond, C. 1986. Childhood respiratory infection and adult chronic bronchitis in England and Wales. British Medical Journal (Clinical Research Ed.), 293(6557): 1271-1275. https://doi.org/10.1136/bmj.294.6564.118

Bondesson, M., Jönsson, J., Pongratz, I., Olea, N., Cravedi, J-P., Zalko, D., Håkansson, H.,  Halldin, K., Di Lorenzo, D., Behl, C., Manthey, D., Balaguer, P., Demeneix, B., Fini, J.B., Laudet, V. & Gustafsson, J-A. 2009. A CASCADE of effects of bisphenol A. Reproductive Toxicology 28: 563-567. https://doi.org/10.1016/j.reprotox.2009.06.014

Białek, S., Górko, D., Zajkowska, A., Kołtowski, Ł., Grabowski, M., Stachurska, A., Kochman, J., Sygitowicz, G., Małecki, M., Opolski, G. & Sitkiewicz, D. 2015. Release kinetics of circulating miRNA-208a in the early phase of myocardial infarction. Kardiologia Polska 73(8): 613-619. https://doi.org/10.5603/KP.a2015.0067

Chapalamadugu, K.C., Vandevoort, C.A., Settles, M.L., Robison, B.D. & Murdoch, G.K. 2014. Maternal bisphenol A exposure impacts the fetal heart transcriptome. PLoS ONE 9(2): 1-9. https://doi.org/10.1371/journal.pone.0089096

Chapin, R.E., Adams, J., Boekelheide, K., Earl Gray Jr., L., Hayward, S.W., Lees, P.S.J., McIntyre, B.S., Portier, K.M., Schnorr, T.M., Selevan, S.G., Vandenbergh, J.G. & Woskie, S.R. 2008. NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Research (Part B): Developmental and Productive Toxicology 83(3): 157-395.

Charan, J. & Kantharia, N. 2013. How to calculate sample size in animal studies? Journal of Pharmacology and Pharmacotherapeutics 4(4): 303-306. https://doi.org/10.4103/0976-500X.119726

Chen, M. & Zhang, L. 2011. Epigenetic mechanisms in developmental programming of adult disease. Drug Discov. Today 16(23-24): 1007-1018. https://doi.org/10.1016/j.drudis.2011.09.008.Epigenetic

Chou, W., Chen, J., Lin, C., Chen, Y., Shih, F. & Chuang, C. 2011. Biomonitoring of bisphenol A concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression: A birth cohort study in Taiwan. Environmental Health 10: 1-10.

Corsten, M.F., Dennert, R., Jochems, S., Kuznetsova, T., Devaux, Y., Hofstra, L., Wagner, D.R., Staessen, J.A., Heymans, S. & Schroen, B. 2010. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circulation: Cardiovascular Genetics 3(6): 499-506. https://doi.org/10.1161/CIRCGENETICS.110.957415

Corvino, S.B., Volpato, G.T., Macedo, N.C.D., Sinzato, Y.K., Rudge, M.V.C. & Damasceno, D.C. 2015. Physiological and biochemical measurements before, during and after pregnancy of healthy rats. Acta Cirurgica Brasileira 30(10): 668-674. https://doi.org/10.1590/S0102-865020150100000003

Dawes, G.S., Mott, J.C. & Shelley, H.J. 1959. The importance of cardiac glycogen for the maintenance of life in foetal lambs and new-born animals during anoxia. The Journal of Physiology 146(3): 516-538.

De Mees, C., Bakker, J., Szpirer, J. & Szpirer, C. 2017. Alpha-fetoprotein: From a diagnostic biomarker to a key role in female fertility. Biomarker Insights 1: 117727190600100. https://doi.org/10.1177/117727190600100002

DiVall, S.A. 2013. The influence of endocrine disruptors on growth and development of children. Current Opinion in Endocrinology, Diabetes and Obesity 20(1): 50-55. https://doi.org/10.1097/MED.0b013e32835b7ee6

Doerge, D.R., Twaddle, N.C., Vanlandingham, M., Brown, R.P. & Fisher, J.W. 2011. Distribution of bisphenol A into tissues of adult, neonatal, and fetal Sprague - Dawley rats. Toxicology and Applied Pharmacology 255: 261-270. https://doi.org/10.1016/j.taap.2011.07.009

Fern, C., Gonz, S., Navarro, C. & Lomb, M. 2015. Transgenerational inheritance of heart disorders caused by paternal bisphenol A exposure. Environmental Pollution 206: 667-678.

Gj, M. 2019. Protein binding and interactions with alpha-fetoprotein (AFP): A review of multiple AFP cell surface receptors, intracytoplasmic binding, and inter- molecular complexing proteins. Journal of Molecular and Cellular Biology Forecast 2: 1-8.

Gray, C., Li, M., Patel, R., Reynolds, C.M. & Vickers, M.H. 2014. Let-7 miRNA profiles are associated with the reversal of left ventricular hypertrophy and hypertension in adult male offspring from mothers undernourished during pregnancy after preweaning growth hormone treatment. Endocrinology 155(12): 4808-4817. https://doi.org/10.1210/en.2014-1567

Hain, A.M. 1932. Increase in weight of the mother and of the foetus during pregnancy (rat). Quarterly Journal of Experimental Physiology 22(1): 71-78. https://doi.org/10.1113/expphysiol.1932.sp000560

Han, C. & Hong, Y. 2016. Bisphenol A, hypertension, and cardiovascular diseases: Epidemiological, laboratory, and clinical trial evidence. Curr. Hypertens Rep. 11(18): 1-5. https://doi.org/10.1007/s11906-015-0617-2

Hijazi, A., Guan, H., Cernea, M. & Yang, K. 2015. Prenatal exposure to bisphenol A disrupts mouse fetal lung development. The FASEB 29: 4968-4977. https://doi.org/10.1096/fj.15-270942

Huang, X., Ding, L., Bennewith, K.L., Tong, R.T., Welford, S.M., Ang, K.K., Story, M., Le, Q.T. & Giaccia, A.J. 2009. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Molecular Cell. https://doi.org/10.1016/j.molcel.2009.09.006

Ikezuki, Y., Tsutsumi, O., Takai, Y., Kamei, Y. & Taketani, Y. 2002. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Human Reproduction 17(11): 2839-2841. https://doi.org/10.1093/humrep/17.11.2839

Kawanabe, Y. & Nauli, S.M. 2011. Endothelin. Cell Mol. Life Sci. 68(2): 195-203. https://doi.org/10.1161/CIRCULATIONAHA.110.956839

Martínez, M.A., Rovira, J., Sharma, R.P., Nadal, M., Schuhmacher, M. & Kumar, V. 2017. Prenatal exposure estimation of BPA and DEHP using integrated external and internal dosimetry: A case study. Environmental Research 158: 566-575. https://doi.org/10.1016/j.envres.2017.07.016

Momtahan, N., Crosby, C.O. & Zoldan, J. 2019. The role of reactive oxygen species in in vitro cardiac maturation. Trends in Molecular Medicine 25(6): 482-493. https://doi.org/10.1016/j.molmed.2019.04.005

Mushtaque, R.S., Hameed, S., Mushtaque, R., Idrees, M. & Siraj, F. 2019. Role of cardio-specific micro-ribonucleic acids and correlation with cardiac biomarkers in acute coronary syndrome: A comprehensive systematic review. Cureus 11(10): e5878. https://doi.org/10.7759/cureus.5878

Nahon, J.L., Tratner, I., Poliard, A., Presse, F., Poiret, M., Gal, A., Sala-Trepat, J.M., Legres, l., Feldmann, G. & Bernuau, D. 1988. Albumin and α-fetoprotein gene expression in various nonhepatic rat tissues. Journal of Biological Chemistry 263(23): 11436-11442.

Nakamura, K., Itoh, K., Yoshimoto, K., Sugimoto, T. & Fushiki, S. 2010. Prenatal and lactational exposure to low doses of bisphenol A alters brain monoamine concentration in adult mice. Neuroscience Letters 484: 66-70. https://doi.org/10.1016/j.neulet.2010.08.021

Nwachukwu, D., Adegunloye, B.J. & Bello, O.I. 2001. Blood pressure and heart rate changes during pregnancy in fructose-fed sprague-dawley. Afr. J. Med. Sci. 30: 187-190. http://www.unn.edu.ng/publications/files/NWACHUKWU_D_C_2.pdf

Palinski, W. & Napoli, C. 2008. Impaired fetal growth, cardiovascular disease, and the need to move on. Circulation 117(3): 341-343. https://doi.org/10.1161/CIRCULATIONAHA.107.750133

Paronis, E., Samara, A., Polyzos, A., Spyropoulos, C. & Kostomitsopoulos, N.G. 2015. Maternal weight as an alternative determinant of the gestational day of Wistar rats housed in individually ventilated cages. Laboratory Animals 49(3): 188-195. https://doi.org/10.1177/0023677214562846

Pederson, B.A., Chen, H., Schroeder, J.M., Shou, W., DePaoli-Roach, A.A. & Roach, P.J. 2004. Abnormal cardiac development in the absence of heart glycogen. Molecular and Cellular Biology 24(16): 7179-7187. https://doi.org/10.1128/mcb.24.16.7179-7187.2004

Rasdi, Z., Kamaludin, R., Ab. Rahim, S., Syed Ahmad Fuad, S.B., Othman, M.H.D., Siran, R., Mohd Nor, N.S., Abdul Hamid Hasani, N. & Sheikh Abdul Kadir, S.H. 2020. The impacts of intrauterine Bisphenol A exposure on pregnancy and expression of miRNAs related to heart development and diseases in animal model. Scientific Reports 10: 5882. DOI: 10.1038/s41598-020-62420-1

Ravichandran, J., Woon, S.Y., Quek, Y.S., Lim, Y.C., Noor, E.M., Suresh, K., Vigneswaran, R., Vasile, V., Shah, A., Mills, N.L., Sickan, J., Beshiri, A. & Jaffe, A.S. 2019. High-sensitivity cardiac troponin I levels in normal and hypertensive pregnancy. American Journal of Medicine 132(3): 362-366. https://doi.org/10.1016/j.amjmed.2018.11.017

Ritterhoff, J. & Tian, R. 2017. Metabolismin cardiomyopathy: Every substrate matters. Cardiovascular Research 113(4): 411-421. https://doi.org/10.1093/cvr/cvx017

Schönfelder, G., Flick, B., Mayr, E., Talsness, C., Paul, M. & Chahoud, I. 2002. In utero exposure to low doses of bisphenol A led to long-term deleterious effects in the vagina. Neoplasia 4(2): 98-102. https://doi.org/10.1038/sj/neo/7900212

Shankar, A., Teppala, S. & Sabanayagam, C. 2012a. Bisphenol A and peripheral arterial disease: Results from the NHANES. Environmental Health Perspectives 120(9): 1297-1300. https://doi.org/10.1289/ehp.1104114

Szablewski, L. 2017. Glucose transporters in healthy heart and in cardiac disease. International Journal of Cardiology 230: 70-75. https://doi.org/10.1016/j.ijcard.2016.12.083

Tan, B.L.L.L., Mohd, M.A. & Ali Mohd, M. 2003. Analysis of selected pesticides and alkylphenols in human cord blood by gas chromatograph-mass spectrometer. Talanta 61(3): 385-391. https://doi.org/10.1016/S0039-9140(03)00281-9

Tin, L.L., Beevers, D.G. & Lip, G.Y.H. 2002. Systolic vs diastolic blood pressure and the burden of hypertension. Journal of Human Hypertension 16(3): 147-150. https://doi.org/10.1038/sj.jhh.1001373

Tong, W., Xue, Q., Li, Y. & Zhang, L. 2011. Maternal hypoxia alters matrix metalloproteinase expression patterns and causes cardiac remodeling in fetal and neonatal rats. American Journal of Physiology - Heart and Circulatory Physiology 301(5): H2113-H2121. https://doi.org/10.1152/ajpheart.00356.2011

Vandenberg, L.N., Colborn, T., Hayes, T.B., Heindel, J.J., Jacobs, D.R., Lee, D.H., Shioda, T., Soto, A.M., vom Saal, F.S., Welshons, W.V., Zoeller, R.T. & Myers, J.P. 2012. Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocrine Reviews 33(3): 378-455. https://doi.org/10.1210/er.2011-1050

Vettori, S., Gay, S. & Distler, O. 2012. Role of MicroRNAs in fibrosis. The Open Rheumatology 6: 130-139.

Vo, W., Colnot, T., Csana, A., Filser, J.G., Dekant, W., Völkel, W., Colnot, T., Csanády, G.A., Filser, J.G. & Dekant, W. 2002. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chemical Research in Toxicology 15(10): 1281-1287. https://doi.org/10.1021/tx025548t

Wang, G., Chen, Z., Bartell, T. & Wang, X. 2014. Early life origins of metabolic syndrome: The role of environmental toxicants. Current Environmental Health Reports 1(1): 78-89. https://doi.org/10.1007/s40572-013-0004-6

Yan, I., Börschel, C.S., Neumann, J.T., Sprünker, N.A., Makarova, N., Kontto, J., Kuulasmaa, K., Salomaa, V., Magnussen, C., Iacoviello, L., Di Castelnuovo, A., Costanzo, S., Linneberg, A., Söderberg, S., Zeller, T., Ojeda-Echevarria, F.M., Blankenberg, S. & Westermann, D. 2020. High-sensitivity cardiac troponin I levels and prediction of heart failure. JACC: Heart Failure 8(5): 401-411. https://doi.org/10.1016/j.jchf.2019.12.008

Yang, X., Doerge, D.R. & Fisher, J.W. 2013. Prediction and evaluation of route dependent dosimetry of BPA in rats at different life stages using a physiologically based pharmacokinetic model. Toxicology and Applied Pharmacology 270(1): 45-59. https://doi.org/10.1016/j.taap.2013.03.022

Zanto, T.P., Hennigan, K., Östberg, M., Clapp, W.C. & Gazzaley, A. 2011. Defining normal and abnormal fetal growth: Promises and challenges. American Journal of Obstetrics & Gynecology 46(4): 564-574. https://doi.org/10.1016/j.cortex.2009.08.003.Predictive

Zhang, H., Yao, M., Morrison, R.A. & Chong, S. 2003. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Archives of Pharmacal Research 26(9): 768-772. https://doi.org/10.1007/BF02976689

 

*Pengarang untuk surat-menyurat; email: sitih587@uitm.edu.my

 

   

sebelumnya