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ABSTRACT

The degradation models are often applied on the degradation data for studying time-to-failure distribution. In this study, 
the Bayesian approach is applied on the power degradation model for estimating the parameters of the time-to-failure 
distribution and its percentiles. Two different distributions are assumed for the degradation parameter of the model. 
The degradation parameter is firstly assumed to follow the skew-normal distribution with three jointly independently 
distributed parameters such that the gamma prior is assumed for the shape parameter, while the scale and the location 
parameters are assumed uniform. The second distribution assumed for the degradation parameter is the log-logistic 
distribution with two jointly independent random parameters where the shape parameter is assumed gamma, while the 
scale parameter is assumed uniform. Based on the Gibbs sampling method carried out under the JAGS platform, the 
models considered are applied on the simulated data and the NASA turbofan Jet engine dataset and the results found 
are compared. In modeling the time-to-failure distribution, it is shown that based on the simulated data and real data, 
the Bayesian approach for the power degradation model with the skew-normal degradation parameter outperformed  
the Bayesian approach for the power degradation model with the log-logistic degradation parameter.
Keywords: Bayesian approach; log-logistic distribution; power degradation model; skew-normal distribution; 
time-to-failure distribution

ABSTRAK

Model degradasi sering digunakan pada data degradasi untuk mempelajari taburan masa kegagalan. Dalam kajian ini, 
pendekatan Bayes digunakan pada model degradasi kuasa untuk menganggarkan parameter taburan masa kegagalan 
dan persentilnya. Dua taburan yang berbeza diandaikan untuk parameter degradasi model. Parameter degradasi  
pertama diandaikan mengikut taburan normal terpencong dengan tiga parameter yang tertabur secara tak bersandar 
dengan diandaikan prior gamma untuk parameter bentuk, sementara parameter skala dan lokasi diandaikan tertabur 
secara seragam. Taburan kedua yang diandaikan untuk parameter degradasi adalah taburan log-logistik dengan dua 
parameter rawak bercantum yang tak bersandar dengan andaian parameter bentuk tertabur secara gamma, sementara 
parameter skala tertabur secara seragam. Berdasarkan kaedah pensampelan Gibbs yang dilaksanakan di platform  
JAGS, model yang dipertimbangkan digunakan pada data simulasi dan set data enjin jet kipas turbo NASA dan hasil 
yang ditemui dibandingkan. Dalam pemodelan taburan masa kegagalan, didapati bahawa berdasarkan data yang 
disimulasikan dan data sebenar, prestasi pendekatan Bayes untuk model degradasi kuasa dengan parameter degradasi 
normal terpencong mengatasi prestasi pendekatan Bayes untuk model degradasi kuasa dengan parameter degradasi  
log-logistik.
Kata kunci: Masa kegagalan; model degradasi kuasa; pendekatan Bayes; taburan log-logistik; taburan normal 
terpencong
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INTRODUCTION

In the reliability study, degradation data are more 
commonly applied instead of the lifetime data which 
involve records of failure time of a particular product. 
Reliability has been clearly defined in many studies 
(Meeker & Escobar 1998). Degradation data plays an 
important role in helping to monitor equipment reliability, 
contributing to the benefit of less frequent maintenance 
and lower costs. In many recent studies, degradation 
data are considered for estimating the time-to-failure 
distribution (Eidous, Ebrahem & Dakhn 2017; Oliveira, 
Loschi & Freitas 2018; Siju & Kumar 2018).

The time-to-failure distribution is determined using 
two different methods, model-based and data-driven  
(Wu et al. 2019). Based on the degradation data,  
model-based methods involve the application of 
mathematical models to represent the failures in the 
form of degradation path models. Most of these models  
include certain mathematical functions such as linear, 
exponential, power and logarithm. In the degradation  
path model, the degradation parameter follows either 
a finite combination of two or more probability  
distributions or a particular probability distribution  
(Sen, Maiti & Chandra 2016).

In modeling lifetime data involving the degradation 
path model, the exponential, log-logistic, Weibull,  
gamma, normal and xgamma probability distributions 
are often applied (Dakhn, Ebrahem & Eidous 2017; 
Gonzalez et al. 2010; Yadav et al. 2021) for describing 
the distribution of the degradation parameter. It has been 
reported that a family of flexible distributions known as 
skew-symmetric distributions are found to be adequate 
in modeling unusual characteristics in the degradation 
data such as exhibiting a high level of skewness and 
the existence of multimodality (Alhamidie et al. 2019; 
Ghaderinezhad, Christophe & Nicola 2020). Indeed, 
the skew-normal distribution which can be reduced to  
another symmetric distribution, depending on the value of 
the skewness parameter, such as the normal distribution 
if the skewness parameter equals 0 and a half normal 
distribution if the skewness parameter approaches  
infinity, as reported by Pan, Liu and Yang (2018), have 
been found by Dakhn, Mohd Aftar and Kamarulzaman 
(2023) to be quite flexible in the degradation modeling. 
Dakhn, Mohd Aftar and Kamarulzaman (2023) have 
determined the posterior distribution based on the 
linear degradation model under the assumption that 
the degradation parameter follows the skew-normal 
distribution.

In this paper, the skew-normal distribution that has 
been introduced by Azzalini (1985) is again applied 
for modelling the degradation parameter, but now 
for the power degradation model instead of the linear  
degradation model for estimating the parameters of the 
time-to-failure distribution and its percentiles as in the 

study by Dakhn, Mohd Aftar and Kamarulzaman (2023). 
In addition, the degradation parameter is assumed to 
follow the log-logistic distribution with random shape 
and scale parameters. Under these two assumptions on 
the distribution of the degradation parameter, a prior 
sensitivity analysis is carried out involving informative 
and non-informative priors. Several works on the 
Bayesian approach is as such (Guure & Noor Akma 
2014; Puggard, Niwitpong & Niwitpong 2022; Shafiq,  
Alamgir & Muhammad 2016). Apart from the simulation 
study, a real data application involving the NASA 
Turbofan Jet Engine dataset (NTJE) is illustrated using  
the two models of interest.

The outline of this paper is summarized as follows. 
Next section explains the power degradation model and 
the derivation of the time-to-failure distribution when the 
degradation parameter follows the skew-normal and log-
logistic distributions. After that, the Bayesian modeling 
which involves the degradation parameter following 
either skew-normal or log-logistic distribution will be 
discussed. Assessment of the estimated parameters for  
the simulated data found using the Bayesian approach 
for the power degradation model involving the 
different choices of the priors and different choices of 
the degradation parameter distribution is carried out 
subsequently by using the JAGS or Just Another Gibbs 
Sampler. In the section that follows, a real application 
that consists of NTJE is considered for the two models 
and the different choices of the priors. Discussion 
on the convergence diagnostic found is provided 
particularly for the case of the model of the skew-normal  
degradation parameter. Finally, the summary of the study  
is given in last section.

MATERIALS AND METHODS

POWER DEGRADATION MODEL

The general path degradation model is expressed as
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where  denotes the observed degradation measurement of  th unit at time ,  ; ,  is 

the actual path of  th unit at time , the term  is a vector of fixed-effect parameters,  is the 

degradation parameter for  th unit, ~   (0, ) is a random error term where  is a 
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 (1)

where yij denotes the observed degradation 
measurement of i th unit at time tij, D(tij; φ, Xi) is the 
actual path of i th unit at time tij, the term φ is a vector 
of fixed-effect parameters, Xi is the degradation  
parameter for i th unit,   is a random  
error term where  is a constant, n is the number 
of units that are tested and mi is the total number  
of observations on i th unit. Here, {εij} and {Xi} are  
assumed independent and  are independent.

The actual path in Equation (1) can be written in 
several forms of mathematical expressions. A nonlinear 
degradation model which consists of the power function 
that is commonly applied in many studies can be given  
as the following:
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As shown in Equations (3) and (4), t >1 will ensure 
the positivity of ln t, which is important so that GX can 
be defined. In addition, the cumulative distribution  
function and the probability density function of the  
time-to-failure distribution are dependent on the 
distribution of the assumed degradation parameter 
X. In the following two subsections, the derivation 
of the time-to-failure distribution is given when the  
degradation parameter is supposed to follow either the 
skew-normal or log-logistic distributions.

POWER DEGRADATION MODEL WITH  
SKEW-NORMAL DEGRADATION PARAMETER

Azzalini (1985) defined that a random variable X follows 
the standard skew-normal distribution if the probability 
density function of X is given by:
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failure distribution, denoted as tp, we solve the  
Equation (3) for tp as follows:
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Equation (10) is considered in determining the posterior distribution of the parameters for the 

time-to-failure distribution. 
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Equation (10) is considered in determining the 
posterior distribution of the parameters for the time-to-
failure distribution.

POWER DEGRADATION MODEL WITH  
LOG-LOGISTIC DEGRADATION PARAMETER

In this subsection, the time-to-failure distribution is  
derived based on the power degradation model in 
Equation (2) by using the degradation parameter X which 
is assumed to follow the log-logistic distribution with  
shape parameter ω and scale parameter α.

The cumulative distribution function and the 
probability density function of the log-logistic distribution 
are respectively given as the following:
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Following the same procedure as in the previous 
subsection, the cumulative distribution function and 
the probability density function of the time-to-failure 
distribution, denoted as FTL (tL) and fTL (tL), are given 
respectively as the following:
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The 100 pth percentile of the time-to-failure 
distribution, denoted as tLP

, can be determined by solving 
Equation (13) for tLP

. Thus, we have:
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Suppose , , … ,  is a random sample of size n from the time-to-failure distribution with 

parameters  and . Based on Equation (14), the likelihood function of the time-to-failure 

distribution is given as follows: 
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In the Bayesian approach, the likelihood function in Equation (16) is considered to obtain the 

posterior distribution of the parameters ,  and . 
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In the Bayesian approach, the likelihood function 
in Equation (16) is considered to obtain the posterior 
distribution of the parameters α, ω and φ.

BAYESIAN MODELLING OF THE  
TIME-TO-FAILURE DISTRIBUTION

The Bayesian approach is a popular method that can be 
applied to estimate the parameters of the time-to-failure 
distribution and its percentiles. The sensitivity of the  
choice of prior distribution for estimating the parameters 
and the percentiles of the time-to-failure distribution 
is studied when the degradation parameter is assumed 
to follow the skew-normal or log-logistic distribution 
by considering both informative and non-informative 
prior distributions. The parameters of the time-to-
failure distribution, say θ = (θ1, θ2, ..., θi), are assumed 
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independent. Thus, the posterior distribution π (θ|t) can 
be given by
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where L(θ;t) is the likelihood function of the  
time-to-failure distribution for the parameters θ and 
qi (θi) is the prior distribution of  θi.

POSTERIOR DENSITY WITH SKEW-NORMAL  
DEGRADATION PARAMETER

Based on the likelihood function given in Equation 
(10), it is evident that the time-to-failure distribution 
based on the skew-normal degradation parameter, using 
a power degradation model, has four parameters where  
θ = (θ1 = μ, θ2 = σ, θ3 = β, θ4 = φ). To apply the 
Bayesian approach, the following prior distributions 
for the parameters μ, σ, β and φ are considered:  
μ ~ Uniform(0, b), σ ~ Uniform(0, b), β ~ Uniform(r, s)  
and φ ~ Uniform(0, b).

Here, r and s are the shape and the scale 
hyperparameters for the gamma prior distribution and 
their values and b are assumed constant.

Based on the Bayesian mechanism, the joint  
posterior density function π (μ, σ, β, φ |t) is found to be 
proportional to
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The joint posterior distribution of the parameters , ,  and  is analytically intractable. So, 

the parameters are estimated by implementing the Markov chain Monte Carlo method available 

in JAGS software. 
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The joint posterior distribution of the parameters 
μ, σ, β and φ is analytically intractable. So, the  
parameters are estimated by implementing the Markov 
chain Monte Carlo method available in JAGS software.

POSTERIOR DENSITY WITH LOG-LOGISTIC  
DEGRADATION PARAMETER

The prior distributions for the parameters of the  
time-to-failure distribution for the power degradation 
model involving the log-logistic degradation 
parameter are assumed the same as in the previous  
subsection. Accordingly, we have α ~ Uniform(0, b),  
ω ~ Gamma(r, s) and φ ~ Uniform(0, b).

Then, the posterior density π (α, ω, φ |tL) is 
proportional to:
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The posterior distribution of the time-to-failure distribution given in Equation (19) is also not 

analytically tractable. Thus, the estimation of the parameters ,  and  is carried out based 

on the Markov chain Monte Carlo method in the JAGS platform. 

 

RESULTS AND DISCUSSION 

JAGS PROCEDURE 

In this study, the Markov chain Monte Carlo (MCMC) method in the JAGS platform is carried 

out to estimate the parameters of the time-to-failure distribution and its percentiles for both 

models. To implement the JAGS algorithm successfully, two parts of the JAGS model have to 

be correctly identified: the likelihood function and the prior distributions. For this study, the 

likelihood functions have been given in Equations (10) and (16) while the prior distributions 

are provided in the previous section. For more illustration of the simulation process and 

determination of the posterior densities, the following flowchart is provided for the case of the 

power degradation model with the skew-normal degradation parameter (Figure 1). 
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The posterior distribution of the time-to-failure 
distribution given in Equation (19) is also not  
analytically tractable. Thus, the estimation of the 
parameters α, ω and φ is carried out based on the  
Markov chain Monte Carlo method in the JAGS platform.

RESULTS AND DISCUSSION

JAGS PROCEDURE

In this study, the Markov chain Monte Carlo (MCMC) 
method in the JAGS platform is carried out to estimate 
the parameters of the time-to-failure distribution and 
its percentiles for both models. To implement the JAGS 
algorithm successfully, two parts of the JAGS model  
have to be correctly identified: the likelihood function 
and the prior distributions. For this study, the likelihood 
functions have been given in Equations (10) and 
(16) while the prior distributions are provided in the 
previous section. For more illustration of the simulation 
process and determination of the posterior densities, the  
following flowchart is provided for the case of the 
power degradation model with the skew-normal  
degradation parameter (Figure 1).

SKEW NORMAL MODEL BASED ON  
DIFFERENT CHOICES OF PRIORS

In this subsection, the sensitivity of the estimated 
parameters and percentiles of the time-to-failure 
distribution based on the skew-normal model is  
presented under different choices of the prior  
distributions which are informative, weakly informative 
and non-informative priors. Under the Bayesian  
approach, the comparison between different choices of 
the priors is provided in terms of point estimated (PE),  
and standard deviation (SD). The data are simulated 
randomly by using Equation (8) based on different  
sample sizes n = 30, 60 and 200. The true values of the 
parameters μ, σ, β and φ are, respectively, assumed 1, 2, 
3 and 6. Also, the critical degradation level is assumed  
to be 20.
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Under the choices of the prior distribution, the 
informative prior for the parameters are assumed as  
μ ~ unif (0, 1), σ ~ unif (0, 2), β ~ gamma (3, 3) and  
φ ~ unif (0, 6) while under weakly informative gamma 
prior, the hyper prior parameters r and s are assumed 
equal to 0.01 and 100, respectively, and the others as  
same as the informative prior. For non-informative priors, 
the distributions for all parameters are assumed uniform 
as in the case of informative priors instead for shape 
parameter is assumed to be β ~ unif (0, 3). The results are 
provided in Table 1.

From the results found in Table 1, the following 
points are noted: a) 17 of 27 cases of the SD values of 
the estimated parameters and the percentiles for different 
choices of the prior of the skew-normal model decrease 
as n increases in different sample sizes, b) In different  
sample sizes, the PE of μ and β parameters of the  
skew-normal model under non-informative gamma 
prior are closer to the true values rather than the other 
choices of priors while the PE of σ and φ parameters 
of the informative gamma prior have closer values, 
c) 7 cases out of 15 of the PE of the percentiles of the  
skew-normal model under weakly informative gamma 

prior is closer to the true values rather than the other 
choices of priors in different sample sizes, d) 9 cases 
out of 12 for different sample sizes, the SD of the  
estimated parameters of the time-to-failure distribution 
by using the Bayesian approach of the non-informative 
prior are found less than those under the other choices 
of priors, and e) 9 cases out of 15 for different sample  
sizes, the SD of the estimated percentiles of the time to 
failure distribution by using Bayesian approach of the 
weakly informative prior are found less than those under 
the other choices of priors. According to these points, 
the Bayesian approach based on the weakly informative 
gamma prior is more precise in estimating the percentiles 
of the time-to-failure distribution under skew-normal 
distribution.

COMPARISON BETWEEN SKEW NORMAL  
AND LOG-LOGISTIC MODELS

Comparison between the posterior densities given 
in Equations (18) and (19) is made in terms of the 
point estimate, standard error (SE) and the deviance 
information criterion (DIC). For this comparison, the 
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FIGURE 1. Flowchart for the posterior distribution of the skew-normal degradation parameter 
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weakly informative gamma prior will be used for the  
skew-normal distribution based on the previous results. 
The data of the time-to-failure distributions are simulated 
randomly based on Equations (8) and (14) for the sample 
size n = 30, 60 and 200. In the case of degradation  
parameter following the skew-normal distribution, it 
is assumed that μ = 0, σ = 0.2, β = 3 and φ = 6 when 
generating the data. The critical degradation level Df  is 
assumed equal to 20. Under the stated assumptions, 
JAGS software is iterated 100000 times where the first 
half of the iterations are treated as burn-in. To assess the 
overall goodness of fit of the models, values of DIC are 
determined. Spiegelhalter et al. (2002) define the DIC as 
the following:
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where θ is the parameter interest; D is the deviance 
which is defined by – 2log (l); l is the likelihood  
function;  is the posterior deviance mean which is  
given based on the values of the estimated parameters 
of the posterior distribution; and PD is the effective 
number of parameters of the model which is defined as  

 where  is the deviance which is 
found by finding the mean of each value of the estimated 
parameters in the posterior distribution. The smaller 
value of DIC indicates a better model. The results are  
provided in Table 2.

TABLE 1. PE and SD for the parameter and the percentiles of the skew-normal model based on informative,  
weakly informative and non-informative gamma prior for n = 30, 60 and 200

Parameter Gamma prior Sample size
n = 30 n = 60 n = 200

PE SD PE SD PE SD
μ = 1 Informative 0.658 0.207 0.691 0.189 0.732 0.178

Weakly informative 0.809 0.152 0.738 0.175 0.588 0.172
Non-informative 0.755 0.174 0.773 0.164 0.772 0.171

σ = 2 Informative 1.430 0.359 1.369 0.368 1.326 0.349
Weakly informative 0.545 0.373 1.257 0.388 1.505 0.342

Non-informative 1.203 0.375 1.065 0.348 1.205 0.306
β = 3 Informative 4.731 2.163 4.342 2.050 3.420 0.753

Weakly informative 0.842 2.060 3.715 1.676 4.665 1.607
Non-informative 2.232 0.558 2.099 0.616 2.578 0.314

φ = 6 Informative 2.838 1.250 3.444 1.393 3.580 1.455
Weakly informative 1.248 1.261 3.188 1.431 3.765 1.402

Non-informative 2.520 1.253 2.740 1.325 3.352 1.337
t0.05 = 1.506 Informative 2.129 0.694 1.934 0.427 1.848 0.242

Weakly informative 1.579 0.652 2.047 0.529 1.631 0.213
Non-informative 1.554 0.668 1.585 0.443 1.677 0.231

t0.2 = 5.395 Informative 7.148 1.973 5.793 1.054 5.702 0.528
Weakly informative 6.349 1.748 6.288 1.072 4.748 0.492

Non-informative 7.291 2.197 6.260 1.196 5.826 0.555
t0.05 = 16.812 Informative 25.646 8.538 17.402 3.560 16.309 1.662

Weakly informative 18.14 4.51 18.531 3.548 14.444 1.647
Non-informative 26.854 8.470 19.224 3.721 16.833 1.671

t0.75 = 53.19 Informative 103.618 53.981 55.696 15.268 48.423 6.501
Weakly informative 44.68 13.39 56.804 14.914 47.944 7.057

Non-informative 94.634 41.663 55.143 13.430 47.568 6.061
t0.9 = 174.98 Informative 464.18 415.601 189.019 78.177 150.057 29.335

Weakly informative 106.66 53.22 182.953 72.552 167.649 36.310
Non-informative 349.559 237.349 160.914 55.443 138.463 24.356
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From the results found in Table 2, the following 
points are noted: a) 5 cases out of 9 of different sample 
sizes, under the power degradation model PE of the 
parameters of the time-to-failure distribution found 
based on the assumption of skew-normal degradation  
parameter is closer to the true parameter values than 
those found based on the assumption of the log-logistic 
degradation parameter. On the other hand, 9 cases out 
of 15 of the PE of the estimated percentiles is closer to 
the true value based on the assumption of log-logistic  
degradation parameter, b) Based on the different sample 
sizes, the SE of the estimated parameters and percentiles 
of the time-to-failure distribution found for both models 
decrease as n increases, c) For most of the sample 
sizes, the SE of the percentiles of the time-to-failure  
distribution for both models increase as p increases,  
d) 9 cases out of 24 of the different sample sizes, the 
SE of the estimated parameters and percentiles of the  
skew-normal model is less than the SE of those found 
for the log-logistic model while 7 cases out of 24 of the 
SE in both models are found equals, e) For all sample 
sizes, the DIC and the BIC for both models decrease as 
n increases, and f) For all sample sizes, the DIC and the 
BIC of the skew-normal model are found to be smaller  
than those found for the log-logistic model. According 
to these notes, it is clear that the Bayesian approach 
for the power degradation model with the skew-
normal degradation parameter outperformed the power 
degradation model with the log-logistic degradation 
parameter.

NASA TURBOFAN JET ENGINE DATASET (NTJE)  
- DESCRIBING THE NTJE DATA

The data considered in this study is run-to-failure 
simulated data of turbofan jet engines which are  
available from NASA. The experiment of this NASA 
study is implemented for four different types of engines, 
denoted as FD001, FD002, FD003, and FD004, where 
each engine set contains a fleet of engines under  
different manufacturing operations, degrees of initial 
wear and run operational settings. In the assessment of 
the faults, 21 sensor measurements are made for each 
engine. The sensor measurements consist of two sub-data 
sets which are training and test data. The training data 
are obtained by letting all engines follow the process of 
the operation until failure while the test data are found 
until all engines arrive at a certain point of time before 
the failure. Accordingly, the NTJE data consists of  
26 columns of numbers which are organized as engine 
number, cycles, operation settings 1,2 and 3 and  
21 columns for sensor measurements. In addition, the  
vector of Remaining Useful Life (RUL) for the  
100 engines were used in this study. More details on the 

data can be found in Chen et al. (2020) and Saxena et  
al. (2008).

CONVERGENCE ANALYSIS

The total number of MCMC iterations involving the  
three chains is set to be 100000 where the first 50000 
iterations are treated as burn-in. Following Kundu 
(2008), the values of the hyperparameters b, r and s are 
all assumed equal to 2. To check for the convergence 
of the series produced based on the MCMC simulation, 
graphs of the trace plots, posterior density functions 
and autocorrelation of the parameters μ, σ, β and φ are 
determined and presented in Figure 2.

As shown in Figure 2, the results found based on 
the proposed model converge satisfactorily well. Also, 
it appears that the autocorrelation graph with thinning 
of 30 reaches zero rather quickly, indicating that the 
chain is mixing adequately. In addition, the values of the  
potential scale reduction factor (psrf) of Gelman-
Rubin and Geweke’s stationarity test for convergence  
assessment which are provided in Table 3 further support 
the case of convergence.

Generally, if the values of Geweke’s stationarity test 
are all between -1.96 and 1.96 and the values of psrf for 
all the parameters are found less than 1.1, the chain is 
said to converge to a stationary distribution (Brooks & 
Gelman 1998; Gelman & Rubin 1992; Geweke 1991). 
It is apparent that the results from Table 3 satisfy the  
desired properties of convergence as outlined by those 
authors. Thus, the chains produced by the MCMC 
algorithm based on the model studied have successfully 
converged to a stationary distribution.  Finally, a  
summary of the posterior distribution for the parameters 
with convergence statistics  based on the NTJE data in 
terms of mean and standard deviations is provided in  
Table 4. The convergence statistics  for all the  
parameters are found to be less than 1.1, which indicates 
that the resultant posterior distributions attained 
convergence (Gelman & Hill 2007).

DATA ANALYSIS

Here, the NTJE data are analyzed based on the  
sensitivity of the different choices of the priors and the 
choices of the distributions of degradation parameters 
as in simulated data.  For the first case, the comparison 
is conducted to determine the type of prior which 
will give more precise results in terms of PE and SD. 
All the hyperparameter values were set equal to 2 for 
informative and non-informative priors, while for the 
weakly informative, the value of the hyperparameters of 
the gamma prior is similar as in the simulated data. The 
results found are provided in Table 5. 
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FIGURE 2. Trace plot, posterior density function and autocorrelation of the parameters 

, ,  and  based on the Bayesian analysis of NTJE data under skew-normal model 

 

As shown in Figure 2, the results found based on the proposed model converge 

satisfactorily well. Also, it appears that the autocorrelation graph with thinning of 30 reaches 

zero rather quickly, indicating that the chain is mixing adequately. In addition, the values of 

the potential scale reduction factor (psrf) of Gelman-Rubin and Geweke's stationarity test for 

convergence assessment which are provided in Table 3 further support the case of convergence. 

FIGURE 2. Trace plot, posterior density function and autocorrelation of the parameters μ, σ, β and φ  
based on the Bayesian analysis of NTJE data under skew-normal model
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Table 5 shows that the results found are close for 
informative, weakly informative and non-informative 
priors. Even for larger data sizes, there are no big 
different in the values of the estimated parameters and 
the percentiles of the time to failure distribution found 
for the NTJE data, but the SD of the estimated parameters 
and the percentiles based on informative prior is slightly 
smaller. Comparison between the adequacy of the  
models for describing NTJE data is presented in terms 
of PE, SE, and DIC where all hyperparameters r, s and 

b of the prior distributions are all assumed equal 2. The  
results are provided in Table 6.

As noted in Table 6, the estimated parameters of 
the skew-normal model are more precise based on the  
analysis of NTJE data because the results indicate smaller 
SE for the parameter estimates found for the skew-normal 
model as opposed to those found for the log-logistic 
model. In addition, the skew-normal model has a smaller 
value of DIC. So, it is a better model in terms of goodness 
of fit for modeling the NTJE data.

TABLE 4. Summary of the posterior distribution based on the skew-normal degradation parameter with NTJE data

Parameters Mean SD Quantiles
2.5% 25% 50% 75% 97.5%

μ 0.855 0.119 0.580 0.783 0.876 0.944 1.033 1.006
σ 0.215 0.036 0.141 0.192 0.216 0.238 0.287 1.003
β 0.537 0.276 0.100 0.331 0.507 0.708 1.149 1.002
φ 1.181 0.537 0.151 0.754 1.240 1.647 1.966 1.007

TABLE 5. PE and SE of the parameters and the percentiles of the skew-normal model based on the NTJE data

Parameters Informative prior Weakly informative prior Non-informative prior
PE SD PE SD PE SD

μ 0.853 0.118 0.853 0.119 0.879 0.119
σ 0.216 0.037 0.218 0.037 0.208 0.033
β 0.550 0.279 0.578 0.289 0.381 0.270
φ 1.179 0.527 1.196 0.534 1.187 0.525

t0.05 14.454 1.865 14.471 1.875 14.514 1.887
t0.2 28.430 2.815 28.445 2.838 28.580 2.829
t0.5 58.328 5.053 58.366 5.085 58.507 5.015
t0.75 104.680 10.312 104.842 10.318 104.475 10.124
t0.9 178.615 22.326 179.173 22.343 176.920 21.526

TABLE 6. PE and SE of the parameters and the percentiles of the time-to-failure distribution based on  
skew-normal model and log-logistic model and DIC found for the models using the NTJE data

Parameters Skew-normal Log-logistic
PE SE PE SE

Scale 0.216 0.004 0.916 0.014

Shape 0.550 0.028 7.633 0.066

φ 1.179 0.053 1.055 0.057
t0.05 14.450 0.187 16.620 0.201
t0.2 28.430 0.282 31.410 0.320
t0.5 58.330 0.505 62.610 0.593
t0.75 104.700 1.031 119.600 1.421
t0.9 178.600 2.233 257.600 4.626

DIC 1066.900 1085.300
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CONCLUSIONS

Time-to-failure distribution for the power degradation 
model is derived based on two assumptions of the 
distribution of the degradation parameter which are the 
skew-normal and the log-logistic distributions. By using 
the Bayesian technique, the parameters and percentiles  
of the time-to-failure distribution are estimated. Based  
on some convergence tests, the chains are found 
mixing well and attaining convergence for the posterior 
distribution of the parameters of the skew-normal 
distribution and the fixed-effect parameter. This is also 
the case for the parameters of the log-logistic distribution 
and the fixed-effect parameter. The Bayesian estimator 
of the parameters and the percentiles of time-to-
failure distribution based on the skew-normal and the  
log-logistic models are compared using the simulated 
data and NTJE data. Based on point estimate, standard 
deviation, standard error, and deviance information 
criteria, the Bayesian technique for the power degradation 
model with the skew-normal distribution outperformed 
the Bayesian for the other model because the parameters 
of the time-to-failure distribution and its percentiles are 
estimated with higher precision.
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