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ABSTRACT

Mitochondrial genome sequencing has become a vital tool for understanding marine bivalve evolution, genetics, and 
adaptation. This review highlights advances from Sanger to next- and third-generation sequencing, which have improved 
the accuracy and efficiency of mitogenome studies. These developments have uncovered unique features such as doubly 
uniparental inheritance (DUI) and extensive gene rearrangements, deepening insights into bivalve evolution, phylogenetics, 
conservation, and aquaculture. Mitogenomics aids in species identification, population analysis, and selective breeding for 
traits like disease resistance. Despite challenges such as complex architectures, annotation gaps, and unusual inheritance 
like DUI, emerging technologies such as single-cell sequencing, CRISPR, and omics integration offer new opportunities. As 
data sharing and collaboration expand, mitochondrial genomics will continue shaping marine conservation and sustainable 
aquaculture.
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ABSTRAK

Penjujukan genom mitokondrion telah menjadi alat penting dalam memahami evolusi, genetik dan penyesuaian bivalvia 
marin. Ulasan ini mengetengahkan kemajuan daripada kaedah Sanger kepada penjujukan generasi baharu dan generasi 
ketiga yang telah meningkatkan ketepatan serta kecekapan kajian mitogenom. Perkembangan ini telah mendedahkan 
ciri unik seperti pewarisan seinduk berganda (DUI) dan penyusunan semula gen yang ketara, sekali gus memperkukuh 
pemahaman tentang evolusi bivalvia, filogenetik, pemuliharaan dan akuakultur. Mitogenom membantu dalam pengecaman 
spesies, analisis struktur populasi dan pembiakan terpilih bagi ciri seperti ketahanan penyakit. Meskipun berdepan cabaran 
berkaitan kerumitan seni bina genom, jurang anotasi dan corak pewarisan luar biasa seperti DUI, kemunculan teknologi 
baharu seperti penjujukan sel tunggal, CRISPR dan integrasi pelbagai omik menawarkan peluang baharu. Dengan 
perluasan inisiatif perkongsian data dan kerjasama penyelidikan, genom mitokondrion dijangka terus memacu kemajuan 
dalam pemuliharaan marin dan amalan akuakultur yang mampan. 
Kata kunci: Akuakultur; bivalvia; filogenetik; pemuliharaan genetik; penjujukan genom mitokondria

INTRODUCTION

Marine bivalves, including clams, oysters, mussels, and 
scallops are ecologically and economically significant 
molluscs. As filter feeders, they support nutrient cycling, 
enhance water quality, and act as habitat engineers that 
promote marine biodiversity (Theuerkauf et al. 2021; 
Vaughn & Hoellein 2018). Their ability to bioaccumulate 
substances makes them valuable environmental 
bioindicators (Vaughn & Hoellein 2018). Economically, 
bivalves are important in aquaculture and fisheries, 
contributing food, building materials, and jewellery, with 
the shells market alone estimated at $5.2 billion, while 
their nutrient remediation services are worth $1.2 billion 

annually (Olivier et al. 2018). However, their productivity 
is increasingly threatened by climate change through 
changes in sea temperatures and environmental stressors 
(Masanja et al. 2023; Steeves et al. 2018; Welton et al. 
2024).

Understanding bivalve genetics heavily relies on 
mitochondrial DNA (mtDNA), a maternally inherited, 
non-recombining molecule with a high mutation rate, 
making it a powerful tool for studying population structure, 
evolutionary history, and maternal lineages (Pakendorf & 
Stoneking 2005). Despite its small size, mtDNA encodes 
important genes involved in cellular respiration and protein 
synthesis (Ferreira & Rodriguez 2024), and its simple 
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structure aids genetic analysis. However, challenges such 
as heteroplasmy, nuclear inserts, and selection pressures 
can complicate analyses, requiring careful interpretation 
of mtDNA data (Ferreira & Rodriguez 2024; Pakendorf & 
Stoneking 2005). 

In bivalves, mitochondrial genome sequencing shows 
unique evolutionary traits, including variable gene order 
and adaptive genomic features, such as AT-rich regions and 
tandem repeats (Feng et al. 2021; Serb & Lydeard 2003). 
These variations aid adaptation to extreme environments 
and provide insights into evolutionary relationships and 
taxonomy (Ozawa et al. 2017; Plazzi, Puccio & Passamonti 
2016). In recent decades, research on mitochondrial 
genome sequencing in marine bivalves has grown 
steadily, reflecting advances in sequencing technologies 
and growing interest in their ecological and economic 
significance. Figure 1 shows the increasing number of 
publications published on bivalve mitochondrial genomes 
between 2015 and 2024, highlighting this trend. Given the 
growing interest in mitochondrial genomics, this review 
explores recent advancements in mitochondrial genome 
sequencing technologies, their applications, challenges and 
future directions in marine bivalves.

DIVING INTO THE MITOCHONDRIAL GENOME OF MARINE 
BIVALVES

Bivalve mitochondrial genomes have various distinct 
features that set them apart from other metazoans. Notably, 
unlike most animals with strictly maternal mitochondrial 
inheritance, some bivalves exhibit doubly uniparental 

inheritance (DUI), a system where males and females 
transmit separate mitochondrial lineages via sperm 
and eggs, respectively (Figure 2). This mechanism has 
been documented in species from the orders Mytiloida, 
Veneroida, and Unionoida (Capt et al. 2020; Smith et al. 
2023). Under DUI, males pass a unique M-type to their 
sons, while females pass the F-type to all offspring resulting 
in substantial genome size differences and sequence 
divergence between mitotypes, which can often surpass 
50% (Capt et al. 2020; Wang, Li & Qi 2022). Furthermore, 
bivalve mitochondrial genomes frequently lack the atp8 
gene, which is otherwise commonly present in most other 
metazoans (Li et al. 2022).

Bivalve mitochondrial structure and gene organization 
also vary remarkably. For instance, rock scallops 
(Spondylidae) exhibit large gene rearrangements compared 
to their relatives in Pectinidae, while Teredinidae maintain 
conserved gene order despite high amino acid substitution 
rates (Li et al. 2023). Elements such as tandem repeats and 
AT-rich areas in the control region have a role in regulating 
replication and transcription, allowing for adaptability to 
extreme conditions like the deep sea (Yang et al. 2019). 
These characteristics reflect the evolutionary plasticity and 
ecological diversity of bivalve mitochondrial genomes.

Bivalves also encounter several genomic challenges, 
including heteroplasmy, repetitive regions, and overall 
structural complexity. Heteroplasmy, the presence of 
multiple mitochondrial genomes within an individual, 
is especially prevalent in DUI species, where different 
inheritance paths lead to significant amino acid divergence 

FIGURE 1. The trend of publications on bivalve mitochondrial genome sequencing from 2015 to 
2024. The data highlights a steady increase in research output, peaking in 2021-2023, reflecting 

advancements in sequencing technologies and a rising interest in bivalve mitogenomic
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in mitochondrial proteins (Le Cam et al. 2023; Lubośny 
et al. 2020). This complicates studies of mitochondrial 
biology and may interfere with species delimitation. For 
instance, in the Aequiyoldia eightsii species complex, 
amplification bias and mitochondrial heteroplasmy can 
mislead species identification (Martínez et al. 2023).

Structural complexity is further exacerbated by 
repetitive DNA. In the Antarctic bivalve, Adamussium 
colbecki, a large proportion of the genome comprises 
transposable elements and satellite DNAs, influencing 
genome evolution (Biscotti, Barucca & Canapa 2018). 
Similarly, the Pacific oyster, Magallana gigas (formerly 
Crassotrea gigas) has a genome rich in repetitive 
elements and structural variations, contributing to its 
genetic diversity and environmental adaptability (Qi, 
Li & Zhang 2021). These features complicate genome 
assembly and annotation, hindering a full understanding 
of bivalve genomic architecture (Gerdol et al. 2020; Smith 
2021). Addressing these challenges requires continuous 
advancement in sequencing technologies and bioinformatic 
approaches.

RIDING THE GENOMIC WAVE: ADVANCEMENTS IN 
SEQUENCING TECHNOLOGIES

EARLY STUDIES USING SANGER SEQUENCING

The journey of mitochondrial genome began with the 
introduction of Sanger sequencing, also known as first-
generation sequencing, pioneered by Frederick Sanger. 
This pioneering method enabled the accurate sequencing 
of entire genomes and remained the gold standard for 
over three decades due to its high precision in detecting 
single-nucleotide polymorphisms and small insertions 
or deletions (Arteche-López et al. 2021; Cheng, Fei & 

Xiao 2023; Hu et al. 2021). Despite its reliability, Sanger 
sequencing presents several limitations in terms of speed, 
throughput, and cost-efficiency. The process was labour-
intensive and time-consuming, making it challenging to 
sequence large sample sets or complete mitochondrial 
genomes efficiently (Legati et al. 2021; Pareek et al. 2011). 
Moreover, this method typically generates relatively short 
read lengths, approximately 500 to 1,000 base pairs (bp), 
which restricts its utility in assembling complex genomes 
(Midha, Wu & Chiu 2019). Its performance also declined 
with degraded DNA samples, a common issue in research 
involving archival or ancient specimens (Timmermans et 
al. 2016).

TRANSITION TO NEXT-GENERATION SEQUENCING (NGS) 
TECHNOLOGIES

The emergence of next-generation sequencing (NGS) 
technologies marked a pivotal advancement in the field 
of genomics. Compared to Sanger sequencing, NGS 
technologies offer high-throughput, greater cost-efficiency, 
and enhanced accuracy. These advances have made it 
feasible to rapidly sequence complete mitochondrial 
genomes, a task that was once labour-intensive and 
expensive (Abicht et al. 2018; Harvey et al. 2019). These 
platforms enable simultaneous sequencing of multiple 
samples, thereby increasing efficiency and reducing per-
sample costs (Harvey et al. 2019; Holt et al. 2021). 

Among the most widely used NGS platforms, Illumina 
stands out for its short-read sequencing capabilities, 
generating millions of reads less than 300 nucleotides in 
length (Wick 2019). This high-throughput capacity makes 
it particularly well-suited for comprehensive genomic 
analyses (Harvey et al. 2019; Song, Yan & Li 2022). The 
development of NGS technologies has greatly advanced 

FIGURE 2. The generalisation of DUI of mitochondria in bivalves (Smith et al. 2023)
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mitochondrial genome research by enabling the rapid 
and cost-effective sequencing of entire mitochondrial 
genomes (Hu et al. 2021; Kumar, Cowley & Davis 
2019). Furthermore, NGS has improved the detection 
and characterization of mitochondrial heteroplasmy and 
large deletions, offering greater accuracy than traditional 
sequencing approaches (Legati et al. 2021). However, it has 
limitations in resolving complex genomic regions because 
of its shorter read length (Calus, Ijaz & Pinto 2018). 

EMERGENCE OF THIRD-GENERATION SEQUENCING 
METHODS

Third-generation, or long-read sequencing, represents a 
significant progression in genomic technologies, offering 
significant advantages for resolving complex mitochondrial 
genomes. Unlike earlier sequencing technologies, recent 
innovations, particularly those from Pacific Biosciences 
(PacBio) and Oxford Nanopore Technologies (ONT), offer 
long reads that can cover tens to thousands of kilobases. 
This capability proves to be advantageous for sequencing 
areas with complex structures, like the long non-coding 
and tandem-repetitive regions found in mitochondrial 
DNA (Kinkar et al. 2021; Midha, Wu & Chiu 2019).

A key benefit of long-read sequencing is the capacity 
to overcome the limitations of short-read technologies, 

especially in accurately resolving repetitive elements 
and detecting major genomic rearrangements. These 
platforms yield more contiguous and accurate assemblies, 
which are essential for reconstructing the full structure of 
mitochondrial genomes (Jung et al. 2019; Kraft & Kurth 
2020; Kumar, Cowley & Davis 2019). For instance, ONT 
technology has enabled the complete characterization of 
mitochondrial non-coding regions, showing structural 
features that were previously difficult to resolve (Kinkar 
et al. 2021).

Furthermore, third-generation sequencing can 
detect epigenetic modifications and sequence full-length 
transcripts without requiring assembly, offering deeper 
insight into genome biology and function (Athanasopoulou 
et al. 2022; Logsdon, Vollger & Eichler 2020). These 
capabilities are especially advantageous for mitochondrial 
genome research, as they simplify the assembly process 
and reduce the error rates associated with short-read 
sequencing (Kumar, Cowley & Davis 2019; Pareek et al. 
2011). As a result, long-read sequencing has become an 
essential tool for exploring the complexity, functionality, 
and evolutionary dynamics of mitochondrial genomes 
(Fukasawa et al. 2020; Kinkar et al. 2021; Midha, Wu 
& Chiu 2019). In the context of bivalve research, the 
selection of sequencing technology should be guided by its 
suitability for mitochondrial genome assembly (Table 1).

TABLE 1. A comparative overview of the most widely used sequencing technologies and their suitability for 
mitochondrial genome assembly in bivalves

Sequencing 
technology

Read length Accuracy Cost Best use case References

Sanger Short (800-
1,000 bp)

High High Small-scale, 
targeted 

sequencing

Runnel et al. 
2022; Schloss et 

al. 2016
Illumina Short (< 300 bp) High Low High-

throughput, 
whole-genome 

sequencing

De Maio et al. 
2019; Zhang et 

al. 2021

PacBio Long (> 10,000 
bp)

High Medium to high De novo 
genome 

assembly, 
structural 

variation in 
bivalves

Runnel et al. 
2022, Weirather 

et al. 2017; 
Ferrarini et al. 

2013

ONT Long (> 10,000 
bp)

Low, can be 
improved 

through post-
sequencing 
corrections

Low Real-time, 
portable 

sequencing

Weirather et al. 
2017; De Maio 

et al. 2019; 
Volden et al. 

2018
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GENOMES BENEATH THE WAVES: APPLICATIONS IN  
MARINE BIVALVES 

PHYLOGENETICS AND EVOLUTION

Mitochondrial genome sequencing has significantly 
advanced our understanding of bivalve phylogenetics and 
evolutionary history. A comprehensive analysis of 100 
mitochondrial genomes by Plazzi, Puccio and Passamonti 
(2016) showed clade-specific patterns, identifying both 
conserved domains and divergent genes such as atp6, 
nad2, nad4L, and nad6. Their findings also demonstrated 
a correlation between genome rearrangement and 
evolutionary rates, outlining three major evolutionary 
phases, which are the origin of bivalves, the branching 
of palaeoheterodonts, and a second radiation that led to 
today’s biodiversity. 

In the Veneroida order, sequencing efforts have refined 
phylogenetic relationships in the genus Donax, aiding 
species identification and aquaculture efforts (Fernández-
Pérez et al. 2017). Similarly, work on Tridacninae clams has 
clarified relationships among Tridacna species, uncovering 
distinct evolutionary paths and laying groundwork for 
future taxonomic and conservation studies (Tan et al. 
2021). 

Mitochondrial genomes also offer insight into deep-sea 
lineages such as Bathymodiolus mussels and Vesicomyid 
clams, showing evolutionary adaptations to extreme 
environments (Ozawa et al. 2017; Yang et al. 2019). 
Within Mytilidae, mitogenomic analyses have elucidated 
subfamily relationships and lineage diversification (Gaitán-
Espitia et al. 2016; Lee et al. 2019).

POPULATION GENETICS

Mitochondrial DNA (mtDNA) markers, such as the 
cytochrome c oxidase subunit I (COI) gene, are widely 
used to assess population structure and genetic diversity in 
bivalves due to their maternal inheritance and high mutation 
rate. For instance, Jiang et al. (2024) used mtDNA markers 
to examine eight populations of Nerita yoldii along the 
Chinese coastline. The findings showed high haplotype but 
low nucleotide diversity, suggesting past bottlenecks and 
genetic differentiation influenced by ocean currents and 
gene flow dynamics. 

Similarly, Hui et al. (2016) applied mitochondrial and 
microsatellite markers to study Tridacna crocea across 
the Indo-Malay Archipelago. Their analysis uncovered 
consistent population structures, with clear differentiation 
in the Java Sea, highlighting the utility of mtDNA in tracing 
maternal lineages, connectivity, and historical dispersal. 
These findings support the role of mtDNA in informing 
conservation strategies for marine bivalves.

CONSERVATION AND BIODIVERSITY

Mitochondrial DNA (mtDNA) plays a vital role in 
identifying endangered species and shaping conservation 
strategies by showing genetic diversity and population 

structure. Katsares et al. (2008) used COI and 16S 
rDNA markers to study the endangered Pinna nobilis 
across Greece, finding high haplotypic diversity but low 
population differentiation, likely due to passive larval 
dispersal. These insights inform protection strategies and 
highlight the potential for aquaculture and population 
management (Katsares et al. 2008; Petit-Marty, Vázquez‐
Luis & Hendriks 2020).

In Lampsilis rafinesqueana, a freshwater mussel, 
mtDNA and RAD sequencing showed population 
divergence shaped by historical biogeographic events, 
such as glaciation and river system shifts (Hein, Farleigh 
& Berg 2024). This genetic structure helps define 
conservation units and manage inbreeding or outbreeding 
risks, supporting more effective recovery plans. Overall, 
mtDNA sequencing offers a powerful tool for monitoring 
biodiversity and guiding species conservation. 

AQUACULTURE AND BIOTECHNOLOGY

Mitochondrial DNA (mtDNA) markers play an important 
role in bivalve aquaculture because they are usually 
inherited maternally and do not recombine, making them 
reliable for tracing broodstock lineages and reducing the 
risk of inbreeding (Harrison 1989; Liu & Cordes 2004). In 
oysters and related species, the unusual system of doubly 
uniparental inheritance (DUI) offers opportunities to study 
both lineages but also requiring careful marker choice 
(Fernández-Pérez et al. 2018; Iannello et al. 2021).

Beyond lineage tracing, mtDNA genes such as 
16S rDNA and cytochrome b are widely used to assess 
population structure, genetic diversity, and demographic 
history in bivalves (Fernández-Pérez et al. 2018; Lee 
et al. 2021). These data help identify distinct stocks for 
conservation and management. Although evidence directly 
linking mtDNA haplotypes to stress or disease resiliencies 
still limited, mitochondrial variation is increasingly 
recognized as a useful indicator of environmental 
adaptation (Wu, Sainz & Shadel 2021). In this way, 
mtDNA complements nuclear genomic approaches like 
genotyping-by-sequencing (GBS) and genome-wide 
association studies (GWAS), which remain central for 
identifying complex traits, by adding insights into maternal 
lineages, population structure, and adaptive responses.

DRIFTING IN UNCERTAINTY: CHALLENGES IN 
MITOCHONDRIAL GENOMICS

Mitochondrial genome sequencing in marine bivalves 
poses both general and lineage-specific challenges. On the 
universal side, the high abundance of repetitive elements, 
sequencing biases, and annotation errors remain major 
obstacles in genome assembly and curation (Smith 2021; 
Tørresen et al. 2019). These issues are compounded 
by inconsistencies across sequencing platforms and 
bioinformatic pipelines, which can lead to misidentified 
genes and database errors that skew downstream analyses 
(Celaj et al. 2014; Raghavan et al. 2022; Salzberg 2019).
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In bivalves, however, additional mitochondrial-
specific complexities arise. These include heteroplasmy 
and doubly uniparental inheritance (DUI), ambiguous 
start/stop codon, and potential nuclear gene transfers, all 
of which hinder accurate annotation and require careful 
manual curation (Klirs et al. 2024; Lang et al. 2023; 
Lucentini et al. 2020). The lack of standardised workflows 
and limited availability of high-quality reference genomes 
further amplify these problems, underscoring the need 
for unified protocols to improve reproducibility and 
comparability in bivalve mitochondrial genomics (Baeza, 
Minish & Michael 2024; Raghavan et al. 2022).

ANCHORING THE FUTURE: THE NEXT WAVE IN 
MITOCHONDRIAL GENOMICS

EMERGING TECHNOLOGIES

The advancement of technologies such as single-cell 
sequencing and CRISPR-based tools is poised to transform 
mitochondrial genomics for marine bivalves. Single-cell 
sequencing allows for the high-resolution exploration of 
mitochondrial genome heterogeneity within individual 
cells, offering new insights into complex inheritance 
systems like doubly uniparental inheritance (DUI) (Breton 
et al. 2009; Le Cam et al. 2023). Meanwhile, CRISPR-
based technologies open pathways for targeted editing 
and functional analysis of mitochondrial genes, potentially 
showing their roles in adaptation and evolution, particularly 
in extreme environments like the deep sea (Yang et al. 
2019).

INTEGRATION WITH OTHER OMICS

Integrating mitochondrial genomics with transcriptomics, 
proteomics, and metabolomics offers a holistic view 
of marine bivalve biology. This multi-omics approach 
can show how mitochondrial function is linked to gene 
expression, cellular metabolism, and environmental 
adaptation. For instance, such integration has helped 
clarify the role of mitochondria in energy metabolism and 
deep-sea adaptation in vesicomyid bivalves (Yang et al. 
2019). It also deepens our understanding of mitochondrial 
genome evolution across bivalve species (Plazzi, Puccio & 
Passamonti 2016).

DATA SHARING AND COLLABORATION

Progress in mitochondrial genomes of marine bivalves 
heavily relies on open-access databases and collaborative 
efforts. Public repositories of mitogenome sequences 
enhance comparative and phylogenetic studies, as shown 
in frameworks for various bivalve families (Lee et al. 
2019; Li et al. 2022). Collaboration accelerates discoveries 
by facilitating data exchange, which is especially vital 
for understanding complex systems like DUI that require 
broad species and population data (Stewart et al. 2021).

CONCLUSIONS

Recent advancements in mitochondrial genome sequencing 
have significantly enhanced our understanding of marine 
bivalve evolution, genetics, and adaptation. High-
throughput technologies have showed unique inheritance 
patterns and genome structures, supporting efforts in 
taxonomy, conservation, and aquaculture. These insights 
aid species identification, genetic diversity assessment, and 
selective breeding. Looking ahead, emerging tools such as 
single-cell sequencing, CRISPR, and integrative omics are 
expected to deepen our understanding of mitochondrial 
function. As collaborative research and data sharing 
expand, mitochondrial genomics will continue to shape the 
future of marine conservation and sustainable aquaculture.
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