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ABSTRACT

Mitochondrial genome sequencing has become a vital tool for understanding marine bivalve evolution, genetics, and
adaptation. This review highlights advances from Sanger to next- and third-generation sequencing, which have improved
the accuracy and efficiency of mitogenome studies. These developments have uncovered unique features such as doubly
uniparental inheritance (DUI) and extensive gene rearrangements, deepening insights into bivalve evolution, phylogenetics,
conservation, and aquaculture. Mitogenomics aids in species identification, population analysis, and selective breeding for
traits like disease resistance. Despite challenges such as complex architectures, annotation gaps, and unusual inheritance
like DUI, emerging technologies such as single-cell sequencing, CRISPR, and omics integration offer new opportunities. As
data sharing and collaboration expand, mitochondrial genomics will continue shaping marine conservation and sustainable
aquaculture.
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ABSTRAK

Penjujukan genom mitokondrion telah menjadi alat penting dalam memahami evolusi, genetik dan penyesuaian bivalvia
marin. Ulasan ini mengetengahkan kemajuan daripada kaedah Sanger kepada penjujukan generasi baharu dan generasi
ketiga yang telah meningkatkan ketepatan serta kecekapan kajian mitogenom. Perkembangan ini telah mendedahkan
ciri unik seperti pewarisan seinduk berganda (DUI) dan penyusunan semula gen yang ketara, sekali gus memperkukuh
pemahaman tentang evolusi bivalvia, filogenetik, pemuliharaan dan akuakultur. Mitogenom membantu dalam pengecaman
spesies, analisis struktur populasi dan pembiakan terpilih bagi ciri seperti ketahanan penyakit. Meskipun berdepan cabaran
berkaitan kerumitan seni bina genom, jurang anotasi dan corak pewarisan luar biasa seperti DUI, kemunculan teknologi
baharu seperti penjujukan sel tunggal, CRISPR dan integrasi pelbagai omik menawarkan peluang baharu. Dengan
perluasan inisiatif perkongsian data dan kerjasama penyelidikan, genom mitokondrion dijangka terus memacu kemajuan
dalam pemuliharaan marin dan amalan akuakultur yang mampan.

Kata kunci: Akuakultur; bivalvia; filogenetik; pemuliharaan genetik; penjujukan genom mitokondria

INTRODUCTION annually (Olivier et al. 2018). However, their productivity

Marine bivalves, including clams, oysters, mussels, and IS increasingly threatened by climate change through

scallops are ecologically and economically significant
molluscs. As filter feeders, they support nutrient cycling,
enhance water quality, and act as habitat engineers that
promote marine biodiversity (Theuerkauf et al. 2021;
Vaughn & Hoellein 2018). Their ability to bioaccumulate
substances makes them valuable environmental
bioindicators (Vaughn & Hoellein 2018). Economically,
bivalves are important in aquaculture and fisheries,
contributing food, building materials, and jewellery, with
the shells market alone estimated at $5.2 billion, while
their nutrient remediation services are worth $1.2 billion

changes in sea temperatures and environmental stressors
(Masanja et al. 2023; Steeves et al. 2018; Welton et al.
2024).

Understanding bivalve genetics heavily relies on
mitochondrial DNA (mtDNA), a maternally inherited,
non-recombining molecule with a high mutation rate,
making it a powerful tool for studying population structure,
evolutionary history, and maternal lineages (Pakendorf &
Stoneking 2005). Despite its small size, mtDNA encodes
important genes involved in cellular respiration and protein
synthesis (Ferreira & Rodriguez 2024), and its simple
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structure aids genetic analysis. However, challenges such
as heteroplasmy, nuclear inserts, and selection pressures
can complicate analyses, requiring careful interpretation
of mtDNA data (Ferreira & Rodriguez 2024; Pakendorf &
Stoneking 2005).

In bivalves, mitochondrial genome sequencing shows
unique evolutionary traits, including variable gene order
and adaptive genomic features, such as AT-rich regions and
tandem repeats (Feng et al. 2021; Serb & Lydeard 2003).
These variations aid adaptation to extreme environments
and provide insights into evolutionary relationships and
taxonomy (Ozawa et al. 2017; Plazzi, Puccio & Passamonti
2016). In recent decades, research on mitochondrial
genome sequencing in marine bivalves has grown
steadily, reflecting advances in sequencing technologies
and growing interest in their ecological and economic
significance. Figure 1 shows the increasing number of
publications published on bivalve mitochondrial genomes
between 2015 and 2024, highlighting this trend. Given the
growing interest in mitochondrial genomics, this review
explores recent advancements in mitochondrial genome
sequencing technologies, their applications, challenges and
future directions in marine bivalves.

DIVING INTO THE MITOCHONDRIAL GENOME OF MARINE
BIVALVES
Bivalve mitochondrial genomes have various distinct
features that set them apart from other metazoans. Notably,
unlike most animals with strictly maternal mitochondrial
inheritance, some bivalves exhibit doubly uniparental

inheritance (DUI), a system where males and females
transmit separate mitochondrial lineages via sperm
and eggs, respectively (Figure 2). This mechanism has
been documented in species from the orders Mytiloida,
Veneroida, and Unionoida (Capt et al. 2020; Smith et al.
2023). Under DUI, males pass a unique M-type to their
sons, while females pass the F-type to all offspring resulting
in substantial genome size differences and sequence
divergence between mitotypes, which can often surpass
50% (Capt et al. 2020; Wang, Li & Qi 2022). Furthermore,
bivalve mitochondrial genomes frequently lack the atp8
gene, which is otherwise commonly present in most other
metazoans (Li et al. 2022).

Bivalve mitochondrial structure and gene organization
also vary remarkably. For instance, rock scallops
(Spondylidae) exhibit large gene rearrangements compared
to their relatives in Pectinidae, while Teredinidae maintain
conserved gene order despite high amino acid substitution
rates (Li et al. 2023). Elements such as tandem repeats and
AT-rich areas in the control region have a role in regulating
replication and transcription, allowing for adaptability to
extreme conditions like the deep sea (Yang et al. 2019).
These characteristics reflect the evolutionary plasticity and
ecological diversity of bivalve mitochondrial genomes.

Bivalves also encounter several genomic challenges,
including heteroplasmy, repetitive regions, and overall
structural complexity. Heteroplasmy, the presence of
multiple mitochondrial genomes within an individual,
is especially prevalent in DUI species, where different
inheritance paths lead to significant amino acid divergence
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FIGURE 1. The trend of publications on bivalve mitochondrial genome sequencing from 2015 to
2024. The data highlights a steady increase in research output, peaking in 2021-2023, reflecting
advancements in sequencing technologies and a rising interest in bivalve mitogenomic



in mitochondrial proteins (Le Cam et al. 2023; Lubosny
et al. 2020). This complicates studies of mitochondrial
biology and may interfere with species delimitation. For
instance, in the Aequiyoldia eightsii species complex,
amplification bias and mitochondrial heteroplasmy can
mislead species identification (Martinez et al. 2023).

Structural complexity is further exacerbated by
repetitive DNA. In the Antarctic bivalve, Adamussium
colbecki, a large proportion of the genome comprises
transposable elements and satellite DNAs, influencing
genome evolution (Biscotti, Barucca & Canapa 2018).
Similarly, the Pacific oyster, Magallana gigas (formerly
Crassotrea gigas) has a genome rich in repetitive
elements and structural variations, contributing to its
genetic diversity and environmental adaptability (Qi,
Li & Zhang 2021). These features complicate genome
assembly and annotation, hindering a full understanding
of bivalve genomic architecture (Gerdol et al. 2020; Smith
2021). Addressing these challenges requires continuous
advancement in sequencing technologies and bioinformatic
approaches.

RIDING THE GENOMIC WAVE: ADVANCEMENTS IN
SEQUENCING TECHNOLOGIES

EARLY STUDIES USING SANGER SEQUENCING

The journey of mitochondrial genome began with the
introduction of Sanger sequencing, also known as first-
generation sequencing, pioneered by Frederick Sanger.
This pioneering method enabled the accurate sequencing
of entire genomes and remained the gold standard for
over three decades due to its high precision in detecting
single-nucleotide polymorphisms and small insertions
or deletions (Arteche-Lopez et al. 2021; Cheng, Fei &
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Xiao 2023; Hu et al. 2021). Despite its reliability, Sanger
sequencing presents several limitations in terms of speed,
throughput, and cost-efficiency. The process was labour-
intensive and time-consuming, making it challenging to
sequence large sample sets or complete mitochondrial
genomes efficiently (Legati et al. 2021; Pareek et al. 2011).
Moreover, this method typically generates relatively short
read lengths, approximately 500 to 1,000 base pairs (bp),
which restricts its utility in assembling complex genomes
(Midha, Wu & Chiu 2019). Its performance also declined
with degraded DNA samples, a common issue in research
involving archival or ancient specimens (Timmermans et
al. 2016).

TRANSITION TO NEXT-GENERATION SEQUENCING (NGS)
TECHNOLOGIES
The emergence of next-generation sequencing (NGS)
technologies marked a pivotal advancement in the field
of genomics. Compared to Sanger sequencing, NGS
technologies offer high-throughput, greater cost-efficiency,
and enhanced accuracy. These advances have made it
feasible to rapidly sequence complete mitochondrial
genomes, a task that was once labour-intensive and
expensive (Abicht et al. 2018; Harvey et al. 2019). These
platforms enable simultaneous sequencing of multiple
samples, thereby increasing efficiency and reducing per-
sample costs (Harvey et al. 2019; Holt et al. 2021).
Among the most widely used NGS platforms, I[llumina
stands out for its short-read sequencing capabilities,
generating millions of reads less than 300 nucleotides in
length (Wick 2019). This high-throughput capacity makes
it particularly well-suited for comprehensive genomic
analyses (Harvey et al. 2019; Song, Yan & Li 2022). The
development of NGS technologies has greatly advanced
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FIGURE 2. The generalisation of DUI of mitochondria in bivalves (Smith et al. 2023)
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mitochondrial genome research by enabling the rapid
and cost-effective sequencing of entire mitochondrial
genomes (Hu et al. 2021; Kumar, Cowley & Davis
2019). Furthermore, NGS has improved the detection
and characterization of mitochondrial heteroplasmy and
large deletions, offering greater accuracy than traditional
sequencing approaches (Legati et al. 2021). However, it has
limitations in resolving complex genomic regions because
of its shorter read length (Calus, ljaz & Pinto 2018).

EMERGENCE OF THIRD-GENERATION SEQUENCING
METHODS

Third-generation, or long-read sequencing, represents a
significant progression in genomic technologies, offering
significant advantages for resolving complex mitochondrial
genomes. Unlike earlier sequencing technologies, recent
innovations, particularly those from Pacific Biosciences
(PacBio) and Oxford Nanopore Technologies (ONT), offer
long reads that can cover tens to thousands of kilobases.
This capability proves to be advantageous for sequencing
areas with complex structures, like the long non-coding
and tandem-repetitive regions found in mitochondrial
DNA (Kinkar et al. 2021; Midha, Wu & Chiu 2019).

A key benefit of long-read sequencing is the capacity
to overcome the limitations of short-read technologies,

especially in accurately resolving repetitive elements
and detecting major genomic rearrangements. These
platforms yield more contiguous and accurate assemblies,
which are essential for reconstructing the full structure of
mitochondrial genomes (Jung et al. 2019; Kraft & Kurth
2020; Kumar, Cowley & Davis 2019). For instance, ONT
technology has enabled the complete characterization of
mitochondrial non-coding regions, showing structural
features that were previously difficult to resolve (Kinkar
et al. 2021).

Furthermore, third-generation sequencing can
detect epigenetic modifications and sequence full-length
transcripts without requiring assembly, offering deeper
insight into genome biology and function (Athanasopoulou
et al. 2022; Logsdon, Vollger & Eichler 2020). These
capabilities are especially advantageous for mitochondrial
genome research, as they simplify the assembly process
and reduce the error rates associated with short-read
sequencing (Kumar, Cowley & Davis 2019; Pareek et al.
2011). As a result, long-read sequencing has become an
essential tool for exploring the complexity, functionality,
and evolutionary dynamics of mitochondrial genomes
(Fukasawa et al. 2020; Kinkar et al. 2021; Midha, Wu
& Chiu 2019). In the context of bivalve research, the
selection of sequencing technology should be guided by its
suitability for mitochondrial genome assembly (Table 1).

TABLE 1. A comparative overview of the most widely used sequencing technologies and their suitability for
mitochondrial genome assembly in bivalves

Sequencing Read length Accuracy Cost Best use case References
technology
Sanger Short (800- High High Small-scale, Runnel et al.
1,000 bp) targeted 2022; Schloss et
sequencing al. 2016
[llumina Short (<300 bp) High Low High- De Maio et al.
throughput, 2019; Zhang et
whole-genome al. 2021
sequencing
PacBio Long (> 10,000 High Medium to high De novo Runnel et al.
bp) genome 2022, Weirather
assembly, etal. 2017,
structural Ferrarini et al.
variation in 2013
bivalves
ONT Long (> 10,000 Low, can be Low Real-time, Weirather et al.
bp) improved portable 2017; De Maio
through post- sequencing etal. 2019;
sequencing Volden et al.
corrections 2018




GENOMES BENEATH THE WAVES: APPLICATIONS IN
MARINE BIVALVES

PHYLOGENETICS AND EVOLUTION

Mitochondrial genome sequencing has significantly
advanced our understanding of bivalve phylogenetics and
evolutionary history. A comprehensive analysis of 100
mitochondrial genomes by Plazzi, Puccio and Passamonti
(2016) showed clade-specific patterns, identifying both
conserved domains and divergent genes such as aip6,
nad2, nad4L, and nad6. Their findings also demonstrated
a correlation between genome rearrangement and
evolutionary rates, outlining three major evolutionary
phases, which are the origin of bivalves, the branching
of palaeoheterodonts, and a second radiation that led to
today’s biodiversity.

In the Veneroida order, sequencing efforts have refined
phylogenetic relationships in the genus Donax, aiding
species identification and aquaculture efforts (Fernandez-
Pérezetal. 2017). Similarly, work on Tridacninae clams has
clarified relationships among Tridacna species, uncovering
distinct evolutionary paths and laying groundwork for
future taxonomic and conservation studies (Tan et al.
2021).

Mitochondrial genomes also offer insight into deep-sea
lineages such as Bathymodiolus mussels and Vesicomyid
clams, showing evolutionary adaptations to extreme
environments (Ozawa et al. 2017; Yang et al. 2019).
Within Mytilidae, mitogenomic analyses have elucidated
subfamily relationships and lineage diversification (Gaitan-
Espitia et al. 2016; Lee et al. 2019).

POPULATION GENETICS

Mitochondrial DNA (mtDNA) markers, such as the
cytochrome ¢ oxidase subunit I (COI) gene, are widely
used to assess population structure and genetic diversity in
bivalves due to their maternal inheritance and high mutation
rate. For instance, Jiang et al. (2024) used mtDNA markers
to examine eight populations of Nerita yoldii along the
Chinese coastline. The findings showed high haplotype but
low nucleotide diversity, suggesting past bottlenecks and
genetic differentiation influenced by ocean currents and
gene flow dynamics.

Similarly, Hui et al. (2016) applied mitochondrial and
microsatellite markers to study 7Tridacna crocea across
the Indo-Malay Archipelago. Their analysis uncovered
consistent population structures, with clear differentiation
in the Java Sea, highlighting the utility of mtDNA in tracing
maternal lineages, connectivity, and historical dispersal.
These findings support the role of mtDNA in informing
conservation strategies for marine bivalves.

CONSERVATION AND BIODIVERSITY

Mitochondrial DNA (mtDNA) plays a vital role in
identifying endangered species and shaping conservation
strategies by showing genetic diversity and population
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structure. Katsares et al. (2008) used COI and 16S
rDNA markers to study the endangered Pinna nobilis
across Greece, finding high haplotypic diversity but low
population differentiation, likely due to passive larval
dispersal. These insights inform protection strategies and
highlight the potential for aquaculture and population
management (Katsares et al. 2008; Petit-Marty, Vazquez-
Luis & Hendriks 2020).

In Lampsilis rafinesqueana, a freshwater mussel,
mtDNA and RAD sequencing showed population
divergence shaped by historical biogeographic events,
such as glaciation and river system shifts (Hein, Farleigh
& Berg 2024). This genetic structure helps define
conservation units and manage inbreeding or outbreeding
risks, supporting more effective recovery plans. Overall,
mtDNA sequencing offers a powerful tool for monitoring
biodiversity and guiding species conservation.

AQUACULTURE AND BIOTECHNOLOGY

Mitochondrial DNA (mtDNA) markers play an important
role in bivalve aquaculture because they are usually
inherited maternally and do not recombine, making them
reliable for tracing broodstock lineages and reducing the
risk of inbreeding (Harrison 1989; Liu & Cordes 2004). In
oysters and related species, the unusual system of doubly
uniparental inheritance (DUI) offers opportunities to study
both lineages but also requiring careful marker choice
(Fernandez-Pérez et al. 2018; Tannello et al. 2021).
Beyond lineage tracing, mtDNA genes such as
16S rDNA and cytochrome b are widely used to assess
population structure, genetic diversity, and demographic
history in bivalves (Fernandez-Pérez et al. 2018; Lee
et al. 2021). These data help identify distinct stocks for
conservation and management. Although evidence directly
linking mtDNA haplotypes to stress or disease resiliencies
still limited, mitochondrial wvariation is increasingly
recognized as a useful indicator of environmental
adaptation (Wu, Sainz & Shadel 2021). In this way,
mtDNA complements nuclear genomic approaches like
genotyping-by-sequencing (GBS) and genome-wide
association studies (GWAS), which remain central for
identifying complex traits, by adding insights into maternal
lineages, population structure, and adaptive responses.

DRIFTING IN UNCERTAINTY: CHALLENGES IN
MITOCHONDRIAL GENOMICS

Mitochondrial genome sequencing in marine bivalves
poses both general and lineage-specific challenges. On the
universal side, the high abundance of repetitive elements,
sequencing biases, and annotation errors remain major
obstacles in genome assembly and curation (Smith 2021;
Torresen et al. 2019). These issues are compounded
by inconsistencies across sequencing platforms and
bioinformatic pipelines, which can lead to misidentified
genes and database errors that skew downstream analyses
(Celaj et al. 2014; Raghavan et al. 2022; Salzberg 2019).
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In bivalves, however, additional mitochondrial-
specific complexities arise. These include heteroplasmy
and doubly uniparental inheritance (DUI), ambiguous
start/stop codon, and potential nuclear gene transfers, all
of which hinder accurate annotation and require careful
manual curation (Klirs et al. 2024; Lang et al. 2023;
Lucentini et al. 2020). The lack of standardised workflows
and limited availability of high-quality reference genomes
further amplify these problems, underscoring the need
for unified protocols to improve reproducibility and
comparability in bivalve mitochondrial genomics (Baeza,
Minish & Michael 2024; Raghavan et al. 2022).

ANCHORING THE FUTURE: THE NEXT WAVE IN
MITOCHONDRIAL GENOMICS

EMERGING TECHNOLOGIES

The advancement of technologies such as single-cell
sequencing and CRISPR-based tools is poised to transform
mitochondrial genomics for marine bivalves. Single-cell
sequencing allows for the high-resolution exploration of
mitochondrial genome heterogeneity within individual
cells, offering new insights into complex inheritance
systems like doubly uniparental inheritance (DUI) (Breton
et al. 2009; Le Cam et al. 2023). Meanwhile, CRISPR-
based technologies open pathways for targeted editing
and functional analysis of mitochondrial genes, potentially
showing their roles in adaptation and evolution, particularly
in extreme environments like the deep sea (Yang et al.
2019).

INTEGRATION WITH OTHER OMICS

Integrating mitochondrial genomics with transcriptomics,
proteomics, and metabolomics offers a holistic view
of marine bivalve biology. This multi-omics approach
can show how mitochondrial function is linked to gene
expression, cellular metabolism, and environmental
adaptation. For instance, such integration has helped
clarify the role of mitochondria in energy metabolism and
deep-sea adaptation in vesicomyid bivalves (Yang et al.
2019). It also deepens our understanding of mitochondrial
genome evolution across bivalve species (Plazzi, Puccio &
Passamonti 2016).

DATA SHARING AND COLLABORATION

Progress in mitochondrial genomes of marine bivalves
heavily relies on open-access databases and collaborative
efforts. Public repositories of mitogenome sequences
enhance comparative and phylogenetic studies, as shown
in frameworks for various bivalve families (Lee et al.
2019; Li et al. 2022). Collaboration accelerates discoveries
by facilitating data exchange, which is especially vital
for understanding complex systems like DUI that require
broad species and population data (Stewart et al. 2021).

CONCLUSIONS

Recent advancements in mitochondrial genome sequencing
have significantly enhanced our understanding of marine
bivalve evolution, genetics, and adaptation. High-
throughput technologies have showed unique inheritance
patterns and genome structures, supporting efforts in
taxonomy, conservation, and aquaculture. These insights
aid species identification, genetic diversity assessment, and
selective breeding. Looking ahead, emerging tools such as
single-cell sequencing, CRISPR, and integrative omics are
expected to deepen our understanding of mitochondrial
function. As collaborative research and data sharing
expand, mitochondrial genomics will continue to shape the
future of marine conservation and sustainable aquaculture.
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