Sains Malaysiana 54(5)(2025): 1253-1268
http://doi.org/10.17576/jsm-2025-5405-05

Exploring the Expression Patterns and Clinical Relevance of MEDS in Pan-cancer
and Liver Hepatocellular Carcinoma: Understanding Tumor Biology and Prognostic

Significance
(Meneroka Corak Ekspresi dan Perkaitan Klinikal MEDS dalam Pan-kanser dan Karsinoma Hepatosel Hati:
Memahami Biologi Tumor dan Kepentingan Prognostik)

SHOULIAN WANG#, JIWEI Y U#, CHUNPENG PAN, HAIBO WANG & QIGUANG NIU*

Department of General Surgery, Shanghai Ninth People s Hospital, School of Medicine, Shanghai Jiao Tong
University, 280 Mohe Road, Shanghai 201999, China

Received: 26 September 2024/Accepted: 15 January 2025
#Co-first author

ABSTRACT

This study examined the expression profiles and medical relevance of MEDS in various types of cancer specifically in
liver hepatocellular carcinoma (LIHC). MEDS, a subunit of the Mediator complex, plays a crucial role in gene expression
regulation and has been implicated in various cellular processes and disease pathogenesis, particularly cancer. Through
comprehensive analysis of multidimensional genomic and transcriptomic data from large-scale cancer databases, we
examined the expression patterns of MEDS across different tissue types and cancer entities. Survival analysis showed
the prognostic significance of MEDS expression in multiple cancer types. Additionally, we investigated the connections
between MEDS levels and factors related to tumors, including microsatellite instability (MSI), tumor mutational burden
(TMB), and cancer stem cell characteristics. Through gene set enrichment analysis (GSEA), enriched pathways and
biological processes linked to MEDS expression were identified, providing insight into its functional significance in tumor
biology. In the context of LIHC, we conducted a detailed analysis using the Xiantao platform, confirming the clinical
significance of MEDS in LIHC and evaluating its diagnostic potential and utility as an independent prognostic marker.
This research offers a comprehensive understanding of the diverse functions of MEDS in the field of cancer research,
underscoring its significance as both a predictor of disease progression and a potential target for treatment in different types
of cancer, particularly focusing on LIHC.
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ABSTRAK

Penyelidikan ini mengkaji profil ekspresi dan kaitan perubatan MEDS dalam pelbagai jenis kanser khususnya dalam
karsinoma hepatosel hati (LIHC). MEDS, subunit kompleks Mediator, memainkan peranan penting dalam peraturan
ekspresi gen dan telah terlibat dalam pelbagai proses sel dan patogenesis penyakit, terutamanya kanser. Melalui analisis
komprehensif data genomik dan transkriptik multidimensi daripada pangkalan data kanser berskala besar, kami meneliti
corak ekspresi MEDS8 merentas jenis tisu dan entiti kanser yang berbeza. Analisis kelangsungan hidup menunjukkan
kepentingan prognostik ekspresi MEDS dalam pelbagai jenis kanser. Selain itu, kami mengkaji hubungan antara tahap
MEDS dan faktor yang berkaitan dengan tumor, termasuk ketidakstabilan mikrosatelit (MSI), beban mutasi tumor (TMB)
dan ciri sel stem kanser. Melalui analisis pengayaan set gen (GSEA), laluan diperkaya dan proses biologi yang dikaitkan
dengan ekspresi MEDS telah dikenal pasti, memberikan gambaran tentang kepentingan fungsinya dalam biologi tumor.
Dalam konteks LIHC, kami menjalankan analisis terperinci menggunakan platform Xiantao, mengesahkan kepentingan
klinikal MEDS8 dalam LIHC dan menilai potensi diagnostik dan utilitinya sebagai penanda prognostik bebas. Penyelidikan
ini menawarkan pemahaman menyeluruh tentang kepelbagaian fungsi MED8 dalam bidang penyelidikan kanser,
menekankan kepentingannya sebagai peramal perkembangan penyakit dan sasaran yang berpotensi untuk rawatan dalam
pelbagai jenis kanser, terutamanya yang memfokuskan pada LIHC.

Kata kunci: Biologi tumor; LIHC; MEDS; pan-kanser
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INTRODUCTION

The Mediator complex, an essential component of the
transcriptional machinery, plays a pivotal role in bridging
gene-specific transcriptional regulators with the core
RNA polymerase II (Pol II) enzyme (Harper & Taatjes
2018; O’Connor-Moneley et al. 2023; Richter et al. 2022).
This macromolecular complex orchestrates the intricate
interplay between various transcriptional activators and
repressors, thereby facilitating the precise regulation of
gene expression programs (Zhao et al. 2022). Among the
numerous subunits constituting the Mediator complex,
MEDS8 (Mediator complex subunit 8) has garnered
significant attention due to its multifaceted roles in cellular
processes and disease pathogenesis, particularly cancer
(Soutourina 2018).

Accumulating evidence suggests that dysregulation
of MEDS expression can profoundly impact various
aspects of tumor biology, including cell proliferation,
survival, and metastasis (Xue et al. 2023). Moreover,
the complex interaction between MEDS and epigenetic
regulatory processes, such as DNA methylation and
histone modifications (D’Aquila et al. 2020; Thorsen et al.
2012), has been suggested as a possible cause of abnormal
gene expression in cancerous cells. Despite the growing
recognition of MED®&’s significance in cancer biology, a
comprehensive understanding of its expression patterns,
prognostic implications, and functional roles across diverse
cancer types remains elusive. Furthermore, the importance
of MEDS in certain cancer types, like liver hepatocellular
carcinoma (LIHC), requires more research to determine its
usefulness as a biomarker for diagnosis and prognosis.

This study aims to conduct a thorough analysis of
MEDS expression patterns in different tissue types and
cancer types. By leveraging multidimensional genomic
and transcriptomic data from large-scale cancer databases,
we aim to elucidate the prognostic significance of MEDS
expression in diverse malignancies. Additionally, we
explore the complex connections between MEDS levels
and factors related to tumors, such as microsatellite
instability (MSI), tumor mutational burden (TMB),
and cancer stemness, to understand how it may impact
the tumor microenvironment and immune responses
(Choo 2011; Ritterhouse 2019; Subramanian et al. 2005).
We use gene set enrichment analysis (GSEA) to uncover
the functional consequences of MEDS dysregulation by
identifying pathways and biological processes that are
enriched with MEDS expression. This method offers a
thorough insight into the possible ways in which MEDS
plays a role in the start, advancement, and resistance
to treatment of tumors. Additionally, we focus on liver
hepatocellular carcinoma (LIHC) as a specific cancer
type of interest, given the established association between
MEDS expression and poor prognosis in this malignancy.
Our goal was to confirm the clinical importance of MEDS
in LTHC by analyzing it thoroughly on the Xiantao platform.
We will assess its diagnostic capabilities, expression

variations in different tumor grades, and its effectiveness
as a standalone prognostic indicator. By conducting this
comprehensive examination, we aim to uncover the
diverse functions of MEDS in the field of cancer research,
opening up possibilities for its use as a predictive indicator
and treatment focus in different types of cancers, with a
specific focus on liver hepatocellular carcinoma.

METHODS

COMPREHENSIVE ANALYSIS OF GENE EXPRESSION AND
PROTEIN LEVELS

The Genotype-Tissue Expression (GTEx) database
was utilized to examine the tissue-specific expression
profile of MEDS in various normal tissues (Lonsdale et
al. 2013). Data from The Cancer Genome Atlas (TCGA)
and the UALCAN web resource were used to analyze the
varying levels of MEDS expression in tumor and normal
samples (Chandrashekar et al. 2022; Danaher et al. 2018).
Immunohistochemistry images from the Human Protein
Atlas (HPA) database were used to evaluate the expression
of MEDS8 protein in various cancer types and their
respective normal tissues (Colwill & Graslund 2011).

SINGLE-CELL TRANSCRIPTOMIC ANALYSIS

Single-cell transcriptomic data from the TISCH database
(http//tisch.comp-genomics.org/) was used to analyze the
levels of MEDS expression in different cell types, such as
tumor cells and cells found in the tumor microenvironment
(Sun et al. 2021).

SURVIVAL ANALYSIS

The predictive importance of MEDS levels was assessed
in 33 different types of cancer from the TCGA database.
Cox regression was used to evaluate the relationship
between MEDS levels and survival outcomes including
overall survival, disease-specific survival, disease-free
interval, and progression-free interval. Survival outcomes
were compared between patients with high and low MED8
expression levels using Kaplan-Meier survival curves and
log-rank tests, with stratification based on the optimal
cutoff value determined by the survminer R package.

MSI, TMB, AND STEMNESS ANALYSIS

Data from the TCGA database was used to explore the
connections between MEDS levels and factors related
to tumors, such as microsatellite instability (MSI), tumor
mutational burden (TMB), and stem cell characteristics.

COPY NUMBER ALTERATION AND DNA METHYLATION
ANALYSIS

We used the cBioPortal for Cancer Genomics website to
examine the copy number changes of MEDS in various



types of cancer. The cBioPortal provides access to
multidimensional cancer genomics data and enables the
visualization and analysis of genetic alterations (Gao et
al. 2013). The UALCAN web resource (http//ualcan.path.
uab.edu/) was used to examine the methylation status of
the MED8 DNA promoter (Chandrashekar et al. 2022).
The UALCAN database allows for the analysis of DNA
methylation levels across different cancer types and the
comparison of methylation levels between tumor and
normal samples.

CO-EXPRESSION AND INTERACTION ANALYSIS

The co-expression analysis of MEDS across different cancer
types was performed using the Gene Expression Profiling
Interactive Analysis (GEPIA) database (http://gepia.cancer-
pku.cn/)(Tang et al. 2017). The database provided the top 50
genes that were co-expressed with MEDS across all types
of cancer. The Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) online tool (https//string-db.
org/) was used to explore the possible protein-protein
interactions involving MEDS8 (Szklarczyk et al. 2023).
The interactions between MEDS and its binding partners
were analyzed and visualized using the STRING database.
Furthermore, the GeneMANIA prediction server (http://
genemania.org/) was employed to explore the potential
interplay between MEDS and other genes or proteins. The
GeneMANIA database integrates various sources of data,
including protein-protein interactions, gene co-expression,
and functional annotations, to generate a comprehensive
network of interactions (Franz et al. 2018).

GENE SET ENRICHMENT ANALYSIS (GSEA)

To explore the possible roles of MEDS in human cancer,
an analysis of gene set enrichment was conducted with
the GSEA tool available at https//www.gsea-msigdb.org/
gsea/index.jsp (Subramanian et al. 2005). The GSEA study
investigated the genes with varying expression levels in
patients with high and low levels of MEDS in different
types of cancer from The Cancer Genome Atlas (TCGA)
database. The analysis aimed to identify gene sets and
pathways enriched in the MEDS8-high or MEDS-low
groups, providing insights into the potential biological
processes and pathways influenced by MEDS expression.

CLINICAL SIGNIFICANCE ANALYSIS IN LIVER
HEPATOCELLULAR CARCINOMA (LIHC)

The clinical significance of MEDS in liver hepatocellular
carcinoma (LIHC) was further investigated using the
Xiantao platform (https://xiantaozi.com/). The subsequent
evaluations were conducted. 1) The expression levels of
MEDS8 were compared between LIHC tumor samples and
matched normal samples, 2) The expression levels of MEDS
were compared between high-grade and low-grade LIHC
tumor samples, 3) ROC curves were created to evaluate
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the diagnostic capability of MEDS in differentiating LIHC
tumor tissues from normal tissues, and 4) Univariate and
multivariate Cox regression were performed to assess the
correlation of MEDS levels with survival outcomes in
patients with LIHC, as well as to ascertain if MEDS serves
as a standalone prognostic indicator.

RESULTS

TISSUE-SPECIFIC AND CANCER-ASSOCIATED
EXPRESSION PATTERNS OF MED8

The examination of the GTEx dataset unveiled a
variegated transcriptional profile of the MEDS8 gene
across an assortment of bodily tissues. Notably, attenuated
expression levels were observed within the heart, muscle,
and brain, while a significant augmentation manifested in
the thyroid, esophagus, and skin, as graphically depicted
in Figure 1(A). This tissue-specific expression pattern
intimated that MED8 may harbor divergent physiological
functions across disparate anatomical domains. The
scrutiny of the TCGA database disclosed a differential
expression of MEDS in several malignancies and their
corresponding non-neoplastic counterparts, as illustrated
in Figure 1(B). The results showed a significant increase
in MEDS gene expression in 15 different types of tumors,
including BLCA, BRCA, CESC, CHOL, COAD, ESCA,
HNSC, KIRC, LIHC, LUAD, LUSC, PRAD, SARC, STAD,
and UCEC, compared to their normal tissues. Conversely,
a significant upregulation of MEDS8 expression was
evident in KICH, THCA, and THYM relative to normal
tissues. Moreover, examination of the UALCAN database
indicated increased levels of the MEDS protein in eight
different types of cancers, including breast, colon, ovarian,
clear cell renal cell, lung, head and neck squamous cell,
glioblastoma, and liver cancers, compared to their normal
tissues (Figure 1(C)). The examination of representative
immunohistochemical images from the HPA database
unveiled high staining levels of MEDS in COAD, BLCA,
and HNSC tumor samples, as evidenced by the intense
staining intensity, while the corresponding normal tissues
exhibited medium staining levels (Figure 1(D)). These
observations lend credence to a potential oncogenic role
for MEDS in certain malignancies, while simultaneously
intimating a tumor-suppressive function in others,
underscoring the intricate and context-dependent nature of
its involvement in the intricate tapestry of cancer biology.

MEDS8 EXHIBITS ELEVATED EXPRESSION IN TUMOR
CELLS AND TUMOR MICROENVIRONMENT BY SINGLE-
CELL ANALYSIS

Analyzing the single-cell transcriptomic data from the
TISCH database (Figure 2), we noticed increased MEDS
expression in different tumor cells when compared to
normal cells. Interestingly, MEDS also exhibited relatively
high expression in tumor microenvironment cells, such
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as fibroblasts, monocytes/macrophages, and endothelial
cells. Collectively, these findings suggest that MEDS
may play crucial roles in tumor initiation and progression,
potentially influencing the crosstalk between tumor cells
and their microenvironment.

MEDS8 EXPRESSION EXHIBITS COMPLEX ASSOCIATIONS
WITH SURVIVAL OUTCOMES IN CANCER

We conducted Cox regression analyses on 33 types of
cancer from TCGA to assess the prognostic importance of
MEDS expression, analyzing OS, DSS, DFI, and PFIL. As
depicted in Figure 3(A)-3(D), MEDS exhibited intricate
associations with these survival metrics, underscoring its
context-dependent roles in cancer progression. Elevated
MEDS expression conferred a significantly increased risk
of mortality, as evidenced by poor OS in THCA, SARC,
LIHC, LGG, LAML, KIRP, KICH, and ACC. Similarly,
high MEDS levels were associated with inferior DSS in
several malignancies, including THCA, SARC, LIHC, LGG,
KIRP, KICH, and ACC. Additionally, the transcriptional
upregulation of MEDS exhibits an intricate association
with unfavorable DFI across a panoply of malignancies,
encompassing LIHC, KIRP, and ACC. Furthermore,
the overexpression of MEDS manifests a compelling
correlation with attenuated PFI in SARC, PRAD, LIHC,
LGG, KIRP, KICH, and ACC. Together, these results
emphasize the diverse and situation-dependent functions
of MEDS in the advancement of cancer and outcomes in
medical settings, indicating its promise as a predictive
marker and treatment focus in certain cancer scenarios.
Furthermore, the study included Kaplan-Meier survival
analysis and log-rank tests to categorize patients based
on their MEDS8 expression levels using the most suitable
threshold. In GBM, BLCA, LIHC, LAML, ACC, SARC,
LGG, UVM, MESO, THCA, KICH, and UCEC, higher
MEDS expression was associated with poorer overall
survival (Figure 3(E)). Similarly, elevated MEDS levels
were associated with reduced DSS in GBM, BLCA, LIHC,
SARC, LGG, UVM, KICH, MESO, THCA, UCEC, and
ACC (Figure S1). Furthermore, elevated MEDS levels
tended to be associated with reduced DFI in COAD,
KIRP, ACC, LIHC, and SARC (Figure S2). Moreover,
increased levels of MEDS expression were linked to poor
progression-free interval in liver hepatocellular carcinoma,
sarcoma, low-grade glioma, uveal melanoma, pancreatic
adenocarcinoma, thymoma, kidney chromophobe,
kidney renal papillary cell carcinoma, and adrenocortical
carcinoma (Figure S3). The results suggest that MEDS
could serve as a promising prognostic biomarker in certain
tumor environments.

CORRELATIONS OF MEDS LEVELS WITH
MICROSATELLITE INSTABILITY, TUMOR MUTATIONAL
BURDEN, AND STEM CELL CHARACTERISTICS

The TCGA database was used to analyze the relationships
between MEDS levels and various tumor-related factors like
stemness, MSI, and TMB in the tumor microenvironment.
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The strong connections found between MEDS levels and
MSI in UCEC, SKCM, LUA, and BRCA (Figure 4(A)),
along with TMB in ACC, COAD, KICH, LIHC, LUAD,
SARC, SKCM, and UCEC (Figure 4(B)), indicate possible
impacts on immune response against tumors. Moreover,
the positive correlation between MEDS8 expression and
stemness in ACC, BLCA, BRCA, ESCA, LIHC, LUAD,
LUSC, PRAD, SARC, STAD, THYM, and UCEC (Figure
4(C)) further highlights the potential role of MEDS in
cancer stem cell characteristics.

GENETIC AND EPIGENETIC CHANGES OF MED8 ACROSS
DIFFERENT HUMAN CANCERS

Genetic and epigenetic alterations exert a pivotal influence
on cancer progression and immune evasion. Analysis of
the cBioPortal database showed that ‘amplification” was
the predominant form of genetic aberration across most
of the examined human tumor types (Figure 4(D)). The
progression of tumors can be altered by DNA methylation,
which is a type of epigenetic process. We examined
the variance in promoter DNA methylation levels of
MEDS between tumors and nearby normal tissues using
UALCAN to study the relationship between promoter DNA
methylation levels and MEDS8 expression (Figure 4(E)).
Our results showed that MED8 had decreased levels of
DNA methylation in various types of cancers, suggesting
that reduced methylation of the MEDS promoter could lead
to increased expression in these tumors.

THE CO-EXPRESSION AND INTERACTION ANALYSES OF
MEDS8 IN PAN-CANCER

Co-expression analysis of MEDS8 in pan-cancer was
performed using the GEPIA database. We obtained the
top 50 co-expressed genes in pan-cancer (Figure 5(A)).
To investigate the functional roles of MEDS, the protein-
protein interactions of MEDS with other partners were
analyzed using STRING online tools. The results showed
that MEDS interacted with MEDI, MED10, MEDII,
MEDI12, MEDI17, MEDI18, MED28, STNI1, TRIP4,
and ZC3HI13 (Figure 5(B)). Additionally, the results in
GeneMANIA indicated that MED8 may interplay with
CDKS8, MEDI12, MEDI13, MEDI19, MEDI11, MED20,
MED30, MEDI14, MED29, H1-4, MED18, MEDI16,
MED4, MEDI10, MED27, MED7, MED24, CDKI19,
MED26, and MEDI15 (Figure 5(C)). The interplay
between MEDS and various components of the Mediator
complex, as well as other interacting partners, highlights
its involvement in transcriptional regulation and cellular
processes that may contribute to tumor biology.

EXPLORING THE POSSIBLE ROLES OF MED8 IN HUMAN
CANCER THROUGH GSEA ANALYSIS

A comprehensive Gene Set Enrichment Analysis (GSEA)
was performed to better understand how MEDS affects the
prognosis of cancer patients across different types of tumors.
In each type of cancer, this study analyzed genes that were
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interval (PFI) in pan-cancer described by the forest plot;(E) Kaplan-Meier survival curves for OS

FIGURE 3. Survival analysis of MEDS in pan-cancer
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FIGURE 4. Comprehensive evaluation of MEDS in pan-cancer:
expression, mutation, and epigenetic regulation



expressed differently in patients with high and low levels
of MEDS8. The heatmap shown in Figure 5(D) showed
strong and consistent enrichment of various pathways in
nearly every type of cancer. Notably, the MYC pathway,
which is associated with cell growth and proliferation,
showed prominent enrichment in MEDS8-high patients.
This indicates that MED8 might be involved in enhancing
cell growth and proliferation by controlling the MYC
pathway. Furthermore, patients with high levels of MED8
showed significant enrichment in the mTORC]1 pathway,
which plays a role in cellular metabolism and nutrient
sensing. This finding implies that MEDS may contribute
to metabolic reprogramming and nutrient utilization in
tumor cells, potentially promoting their survival and
growth. The activation of oxidative phosphorylation and
DNA repair pathways in patients with high levels of MED8
indicates that MED8 may play a role in controlling cellular
energy generation and mechanisms for repairing DNA
damage. These pathways are crucial for maintaining cell
viability and genomic stability, and their dysregulation
can contribute to tumor progression. Interestingly, the
interferon response pathway, which plays a critical role in
immune regulation and antitumor immune responses, was
also significantly enriched in MED8-high patients across
multiple cancer types. This finding indicates a potential
link between MEDS expression and the modulation of the
immune microenvironment, suggesting that MED8 may
influence immune responses within the tumor and impact
patient prognosis.

CLINICAL SIGNIFICANCE OF MEDS IN LIHC

Previous studies have established a strong association
between MEDS expression and poor prognosis in LIHC.
Consequently, we conducted a comprehensive analysis
to further explore the clinical significance of MEDS in
LIHC using the Xiantao platform. In our analysis, we
confirmed a significant increase in MEDS8 expression
in LIHC tissues compared to matched samples (Figure
6(A)). Additionally, high-grade samples exhibited even
higher levels of MEDS expression than low-grade samples
(Figure 6(B)). Diagnostic ROC curves further demonstrated
the remarkable ability of MEDS to differentiate tumor
tissues from normal tissues (Figure 6(C)). Finally, our
comprehensive univariate and multivariate Cox regression
analyses solidified MEDS as an independent prognostic
marker for LIHC (Figure 6(D)). Collectively, these studies
strongly suggest that MEDS may play a pivotal role in
promoting the progression of LIHC.

DISCUSSION

The Mediator complex, a critical component of the
transcriptional machinery, has emerged as a pivotal player
in cancer biology, with its subunits exhibiting intricate
and context-dependent roles in tumor initiation and
progression. This study thoroughly examines MEDS, an
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essential component of the Mediator complex, in various
types of cancer, showing its diverse expression patterns,
prognostic significance, and connections to different types
of malignancies.

Our findings show a strikingly heterogeneous
expression profile of MEDS across various tissue types,
suggesting its involvement in diverse physiological
processes. The significant increase in MEDS expression
in various cancer types, such as bladder, breast, cervical,
cholangiocarcinoma, colorectal, esophageal, head and
neck, kidney, liver, lung, prostate, sarcoma, stomach, and
uterine cancers, indicates a possible oncogenic function in
these tumors. Conversely, the elevated expression observed
in kidney chromophobe and thyroid cancers intimates a
potential tumor-suppressive function, underscoring the
context-dependent nature of MEDS8’s impact on cancer
biology. Intriguingly, our single-cell transcriptomic
analysis showed elevated MEDS8 expression not only in
tumor cells but also in various components of the tumor
microenvironment, such as fibroblasts, monocytes/
macrophages, and endothelial cells. This finding suggests
that MEDS8 may play crucial roles in shaping the intricate
crosstalk between tumor cells and their surrounding
microenvironment, potentially influencing processes such
as angiogenesis, immune modulation, and metastasis.

In our study, the importance of MEDS expression
as a predictor became a key focus, showing intricate
connections among various types of cancer and
different measures of survival, such as overall survival,
disease-specific  survival, disease-free interval, and
progression-free interval. High levels of MEDS8 were
associated with a higher risk of death and cancer recurrence
in various types of tumors, including thyroid, sarcoma,
liver, low-grade glioma, acute myeloid leukemia, kidney
renal papillary cell carcinoma, kidney chromophobe, and
adrenocortical carcinoma, but the specific prognostic
implications seemed to vary depending on the situation.
This underscores the need for a nuanced understanding of
MEDS’s roles within specific tumor microenvironments
and molecular subtypes.

Exploring the connections between MEDS levels
and factors related to tumors, like microsatellite
instability (MSI), tumor mutational burden (TMB), and
stem cell characteristics, showed fascinating findings.
The strong associations found between MEDS levels
and MSI in various cancer forms, such as uterine corpus
endometrial carcinoma, skin cutaneous melanoma, lung
adenocarcinoma, and breast invasive carcinoma, indicate
a possible connection between MEDS irregularities and
impaired DNA mismatch repair processes. Likewise,
the strong connection between MEDS levels and TMB
in various cancers like adrenocortical carcinoma, colon
adenocarcinoma, kidney chromophobe, liver hepatocellular
carcinoma, lung adenocarcinoma, sarcoma, skin cutaneous
melanoma, and uterine corpus endometrial carcinoma
suggests a possible involvement in influencing the genetic
makeup of tumors and immune responses against cancer.
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FIGURE 6. Clinical significance of MEDS in hepatocellular carcinoma
(LIHC) based on TCGA database
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The strong connection between MEDS levels and
stem cell characteristics in different types of cancer, such
as adrenocortical carcinoma, bladder urothelial carcinoma,
breast invasive carcinoma, esophageal carcinoma, liver
hepatocellular carcinoma, lung adenocarcinoma, lung
squamous cell carcinoma, prostate adenocarcinoma,
sarcoma, stomach adenocarcinoma, thymoma, and uterine
corpus endometrial carcinoma, indicates that MED8 may
play a role in controlling cancer stem cell properties. These
findings have profound implications for understanding
tumor heterogeneity, therapeutic resistance, and metastatic
potential.

Our analysis of genetic and epigenetic alterations
showed that amplification was the predominant form of
genetic aberration across most cancer types, highlighting
the potential impact of MEDS8 copy number alterations on
its dysregulated expression. Moreover, the decreased DNA
methylation levels in the MEDS8 promoter region in various
types of cancer, such as bladder urothelial carcinoma, uterine
corpus endometrial carcinoma, thyroid carcinoma, kidney
renal clear cell carcinoma, liver hepatocellular carcinoma,
testicular germ cell tumors, lung adenocarcinoma, head and
neck squamous cell carcinoma, sarcoma, lung squamous
cell carcinoma, rectum adenocarcinoma, prostate
adenocarcinoma, pheochromocytoma and paraganglioma,
and breast invasive carcinoma, indicate that epigenetic
processes like promoter hypomethylation might play a role
in the increased expression of MEDS in these malignancies.

The co-expression and interaction analyses of MEDS
unveiled intricate associations with various components
of the Mediator complex, as well as other transcriptional
regulators and cellular pathways. GSEA offered valuable
insights into the potential functional roles of MEDS in
cancer biology. The consistent and significant enrichment
of the MYC pathway in MEDS8-high patients across
multiple cancer types suggests that MED8 may promote
cellular growth and proliferation through the regulation of
this pivotal oncogenic pathway. Given the well-established
roles of MYC in driving various aspects of tumor biology,
including cell cycle progression, metabolism, and
stemness, the interplay between MEDS8 and MYC signaling
may represent a critical nexus in cancer pathogenesis.

Furthermore, the enrichment of the mTORC1 pathway
in MEDB8-high patients intimates a potential role for MEDS
in modulating cellular metabolism and nutrient sensing,
processes that are frequently dysregulated in cancer cells to
support their heightened metabolic demands. The observed
enrichment of oxidative phosphorylation and DNA repair
signaling pathways suggests that MED8 may contribute to
the regulation of cellular energy production and genomic
integrity, respectively, processes that are crucial for tumor
cell survival and proliferation.

Intriguingly, the enrichment of the interferon response
pathway in MEDS8-high patients across multiple cancer
types unveils a potential link between MEDS expression
and the modulation of the immune microenvironment. This
finding raises the intriguing possibility that MED8 may

influence antitumor immune responses, either by shaping
the immunogenicity of tumor cells or by modulating the
recruitment and activity of immune cells within the tumor
microenvironment. Elucidating the precise mechanisms
underlying this association could pave the way for novel
immunotherapeutic strategies targeting MEDS or its
associated pathways.

Our comprehensive analysis of liver hepatocellular
carcinoma (LIHC) further reinforced the clinical
significance of MEDS in this malignancy. The notable
increase in MEDS levels in LIHC tissues in comparison
to normal samples, along with its heightened presence in
high-grade tumors, highlights its promise as a biomarker
for diagnosis and prognosis. The remarkable ability of
MEDS to differentiate tumor tissues from normal tissues,
as demonstrated by the diagnostic ROC curves, highlights
its potential utility as a companion diagnostic tool for
LIHC.

Given the high expression of MEDS in various cancers
and its potential role in cell cycle regulation, targeting
MEDS or its associated pathways could emerge as a novel
therapeutic strategy. This could involve the development
of drugs that specifically inhibit MEDS activity, or that
target the signaling pathways in which MEDS is involved,
potentially leading to more effective cancer treatments.
Understanding the precise mechanisms of MEDS8’s action
could lead to the design of targeted therapies that reduce
the expression or activity of MEDS in cancer cells, thereby
inhibiting tumor growth and progression.

Crucially, our univariate and multivariate Cox
regression analyses solidified MEDS as an independent
prognostic marker for LIHC, suggesting that its
dysregulation may contribute to the aggressive nature and
poor clinical outcomes associated with this malignancy.
Given the dismal prognosis and limited therapeutic options
for LIHC, the identification of MEDS as a key player in
its pathogenesis opens up avenues for the development of
targeted therapeutic strategies.

LIMITATIONS

Despite providing profound insights, the complexity of
single-cell transcriptomic analysis and the challenges
associated with data analysis may lead to difficulties in
interpretation and potential biases. Our study may be
subject to sample selection bias, particularly if the sample
does not adequately represent a broader demographic or
disease stage range. As a retrospective study, our data
collection could be constrained by inconsistencies in
recording practices or gaps in information, potentially
affecting the accuracy of our findings. Although we have
analyzed genetic and epigenetic changes, integrating this
data to achieve a comprehensive understanding of MEDS’s
role remains a challenge. Our research is primarily based
on correlational analysis, lacking functional experiments
to directly demonstrate MEDS8’s impact on cancer
progression.



In summary, our comprehensive pan-cancer analysis
has unveiled the multifaceted roles of MEDS in tumor
biology, elucidating its complex expression patterns,
prognostic implications, and functional associations
across diverse malignancies. The intricate interplay
between MEDS8 and various oncogenic pathways, tumor
microenvironment factors, and epigenetic regulatory
mechanisms highlights the potential for targeting MEDS
or its associated networks as a therapeutic strategy. Our
research in liver hepatocellular carcinoma confirms the
importance of MEDS as a biomarker for diagnosis and
prognosis and as a possible target for treatment in this
aggressive cancer. Further research should concentrate on
elucidating the specific molecular pathways through which
MEDS impacts the development of LIHC, leading to the
creation of targeted therapies for MEDS and individualized
treatment strategies.
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