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ABSTRACT

The presence of extreme structural change in a sequence of data points over time may have a detrimental impact on the 
estimation of economic and financial indicators. Anomalies caused by these extreme values can distort the estimated 
parameters, diminish the accuracy of the time series model, and potentially lead to inaccurate forecasts. In this research, 
a general-to-specific modeling approach is utilized to identify the structural changes through indicator saturation within 
the framework of a state-space models as an alternative to current method. By focusing on impulse and steps indicator 
saturation, this study evaluates their effectiveness through Monte Carlo simulations that are replicated 1000 times. The 
Monte Carlo experiments demonstrate that the efficiency of indicator saturation is heavily dependent on factors such as 
the magnitude of the structural change, the level of statistical significance, and the position of an extreme value within the 
series. Subsequently, this study employs the combined impulse and steps indicator saturation to detect structural breaks 
in the FTSE 100 daily closed stock price index. The most important findings relate to the coefficients for the structural 
breaks at  and  are estimated at  and , respectively. 
The findings show that the characteristics, position, and direction of the extreme values detected by impulse indicator 
saturation coincide with the occurrence of the COVID-19 pandemic, which has had a global impact on economic activities. 
This finding may lead to better understanding of how the stock markets in UK reacts to government policy due to the 
COVID-19 pandemic. 
Keywords: General-to-specific; indicator saturation; model selection; Monte Carlo; structural changes 

ABSTRAK

Kehadiran perubahan struktur yang ketara dalam satu data siri masa boleh memberi kesan buruk terhadap penganggaran 
penunjuk ekonomi dan kewangan. Nilai melampau yang menyebabkan anomali boleh memesongkan parameter yang 
dianggarkan, mengurangkan ketepatan model siri masa dan berpotensi menghasilkan ramalan yang tidak tepat. Dalam 
kajian ini, pendekatan pemodelan umum kepada khusus digunakan untuk mengenal pasti perubahan struktur melalui 
petunjuk ketepuan dalam kerangka model ruang keadaan sebagai alternatif kepada kaedah semasa. Dengan memberi 
tumpuan kepada petunjuk ketepuan impuls dan langkah, kajian ini menilai keberkesanannya melalui simulasi Monte 
Carlo yang diulang sebanyak 1000 kali. Uji kaji Monte Carlo menunjukkan bahawa kecekapan ketepuan penunjuk sangat 
bergantung kepada faktor seperti magnitud perubahan struktur, tahap signifikan statistik dan kedudukan nilai ekstrem 
dalam siri data tersebut. Seterusnya, kajian ini menggunakan gabungan ketepuan penunjuk impuls dan langkah untuk 
mengesan perubahan struktur dalam indeks harga penutup harian FTSE 100. Penemuan paling penting berkaitan dengan 
pekali bagi perubahan struktur pada penemuan ini menunjukkan bahawa ciri, kedudukan dan arah nilai melampau yang 
dikesan oleh ketepuan penunjuk impuls bertepatan dengan berlakunya pandemik COVID-19, yang telah memberi kesan 
global terhadap aktiviti ekonomi. Penemuan ini boleh membawa kepada pemahaman yang lebih baik tentang bagaimana 
pasaran saham di UK bertindak balas terhadap dasar kerajaan akibat pandemik COVID-19.
Kata kunci: Monte Carlo; pemilihan model; perubahan struktur; petunjuk ketepuan; umum kepada tertentu
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INTRODUCTION

Time series data are predominantly observational in nature. 
Structural changes within time series can significantly 
impact the estimation of models, primarily employed for 
economic and financial indicators. Outlier and structural 
breaks are the example of the structural changes in time 
series data. The sources structural changes may stem from 
extraordinary events such as warfare, pandemics, policy 
modifications, or natural disasters (Castle, Hendry & 
Martinez 2023). The presence of such structural changes 
consistently raises critical concerns regarding the accuracy 
and efficiency of model parameter estimations. Failing to 
account for these outliers or structural breaks can result 
in the misclassification of a distribution as fat-tailed 
when it is a thin-tailed distribution. Furthermore, Castle 
and Hendry (2019) demonstrated that neglecting existing 
structural changes in models leads to excessively wide 
interval forecasts. Unanticipated events can trigger forecast 
failures, causing actual outcomes to deviate significantly 
from forecasted values, measured in standard errors. These 
forecast failures are often attributed to location shifts in the 
time series data after the forecasts have been made. The 
implications of forecast failure extend to decision-making 
and policy formation, potentially leading to poor decisions 
and misguided policies.

Numerous methods available in the literature 
including statistical, regression based and machine 
learning approaches. Statistical based techniques such as 
Z-score, modified Z-score and interquartile range require 
sufficient information on the dataset. The application of 
outlier detection algorithm has been extensively explored 
in real applications such as in engineering, oil and gas, 
fraud detection and image processing (Alimohammadi 
& Nancy Chen 2022; Huang, Cheng & Zhang 2023; 
Sewwandi, Li & Zhang 2024; Shao et al. 2022; Yu et al. 
2014). Machine learning techniques, like classification 
algorithms, detect outliers by identifying data outside 
the decision boundary (Bergman & Hoshen 2020) with 
recent study by Vishwakarma, Paul and Elsawah (2020) 
exploring neural network algorithm to detect outliers 
in univariate time series. Another study conducted by 
Uzabaci, Ercan and Alpu (2020) proposed two machine 
learning techniques to identify outliers viz blocked adaptive 
computationally efficient outlier nominators (BACON) 
and fast minimum covariance determinant (FAST-MCD) 
algorithms for multivariate datasets. However, these 
methods primarily identify outlier locations and often fail 
to estimate model parameters accurately in the presence 
of outliers. Additionally, machine learning algorithms are 
computationally expensive, require minimum thresholds 
for dataset size or distance, and perform poorly with small 
datasets (Alimohammadi & Nancy Chen 2022). To address 
these limitations, we propose using the indicator saturation 
technique within a GETS framework, as supported by 
recent studies on its application to detect outliers and 
structural breaks (Castle & Kurita 2021; Castle, Doornik & 
Hendry 2012, 2011; Pellini 2021). 

Impulse indicator saturation (IIS) and step indicator 
saturation (SIS) are the two types of indicator saturation 
technique proposed by Hendry (1999). Both types involve 
adding a binary set of dummy variables each corresponding 
to a single observation, and including these indicators in 
a regression model. The performance of the IIS and SIS 
were excellent when applied to basic structural time series. 
However, this particular analysis has only been conducted 
by Marczak and Proietti (2016). Many issues highlighted 
here remain unexplored in the literature about the 
performance of indicator saturation in state space models. 
The complete potential of this approach has yet to be 
confirmed; therefore, our attention is directed towards the 
local level model (LLM) including the slope (LLTM) and 
seasonal component (LLTSM). State-space models provide 
a robust framework for detecting outliers and structural 
breaks, including through methods like IIS and SIS. These 
models are characterized by random disturbances around 
an underlying level, making them ideal for analysing 
fluctuations and identifying deviations. While the standard 
approach relies on auxiliary residuals for detection  
(Durbin & Koopman 2012), it requires prior information 
about the location of potential outliers or breaks. By 
integrating IIS and SIS with state-space methods, we aim to 
overcome this limitation and improve detection accuracy.

This study is conducted to immediately detect outliers 
or structural breaks in a series to avoid misspecification of 
estimation and distortion of forecast accuracy. Specifically, 
combination of IIS and SIS are used to detect structural 
change when they are near to the forecast origin. This is 
done by applying the IIS proposed by Hendry (1999) to 
identify the unknown amount, location, and magnitude of 
outliers in the series examined. IIS works by annexing a set 
of dummy variables as an intervention for each observation 
in the series. A plethora of studies on this approach can be 
found in Castle, Doornik and Hendry (2012, 2011), Castle 
et al. (2015),  Johansen and Nielsen (2009), Marczak 
and Proietti (2016), and Santos, Hendry and Johansen 
(2008), using Autometrics embodied in OxMetrics as a 
computational tool to perform GETS algorithm. Although 
similar approach was used by Marczak and Proietti 
(2016), this work differs in the way it handles the dummy 
indicators in state-space models by combining impulse 
and steps indicators in the model estimation. To the best 
of our knowledge, the performance of IIS+SIS integrated 
with the state-space models has not been scrutinized yet. 
This combination offers several advantages over existing 
methods. Unlike traditional approaches that require prior 
information about the location of outliers or structural 
breaks, IIS and SIS systematically test for these structural 
changes across all potential time points, making the process 
more robust and automated. Hence, this study is one of the 
first attempts to thoroughly examine the performance of 
IIS and SIS in the context of the state-space models by 
assessing the potency and gauge values. Further, we apply 
the IIS+SIS to detect any structural change in stock price 
series, specifically FTSE 100. 
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The subsequent part of this investigation is organized 
as follows. In the methodology section, an in-depth 
examination of the structure for the state-space models in 
outlier detection is provided, along with the presentation 
of the indicator saturation concepts within the state-space 
framework. Next, the section commences by outlining 
the simulation settings for the Monte Carlo experiment, 
followed by a summary of the performance of Monte 
Carlo simulations on the detection power of IIS+SIS. In the 
empirical applications section, IIS and SIS are subsequently 
employed to the actual stock price data to identify outlier or 
structural breaks. Last section brings the paper to a close.

METHODOLOGY

This section summarized the whole procedure of outlier 
detection algorithm in state-space framework as illustrated 
in Figure 1. Firstly, the procedure started with generating 
an artificial time series dataset based on the state-space 
models. Then, the series was contaminated with the additive 
outlier (AO) for performance evaluation purposes. This 
is followed by the Monte Carlo simulation experiments 
replicated at M = 1000 times. The performance of indicator 
saturation was measured using potency and gauge metrics. 
Finally, the application of IIS and SIS to a real dataset to 
capture the outlier in stock price data.

STATE-SPACE MODELS

The simplest form of state space model is local level 
model (LLM). The model consists of level component 
which varies over time. The level component acts as an 
intercept in the classical regression model. The LLM can 
be formulated as

(1)

(2)

for  where  is the unobserved level 
component at time t,  is the irregular component at time t, 
and  is the level disturbance at time t. The  and  are 
all assumed to be independent and identically distributed 
with zero mean and variances  and , respectively. 
Equation (1) is defined as the observation equation and 
Equation (2) is defined as the transition state equation. 
The transition equation shows the fundamental values 
based on a random walk. The component  is defined 
as noise and assumed to be independent and identically 
distributed. In this study, we define the signal-to-noise 
ratio as . Thus, the local level model also 
can be referred to as the random walk plus noise model  
(Harvey & Koopman 2000). 

FIGURE 1. Summary of the performance evaluation and  
application of indicator saturation
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Local linear trend model is an extension of LLM, by 
adding the slope component,  to the local level model. In 
this model, both level and slope vary over time. Hence, the 
local linear trend model (LLTM) is formulated as follows:

(3)

(4)

(5)

where t = 1, 2, …, T;  and  are independent and 
identically distributed. With equation (3) as the observation 
equation, Equations (4) and (5) represent the state equations. 
In particular,  remains as the trend component, and  
as the slope of trend component, differs from the slope of 
classic regression line. Therefore,  cannot be conceived 
as the coefficient of regressors in linear regression model 
when  and  equal to zero.

Seasonal effect refers to the recurring pattern in time 
series within a specific period of time. In state-space 
models, seasonal effect can be modelled by adding the 
seasonal component, either in LLM or LLTM. Then, it 
can be formulated as follows; for simplicity, the seasonal 
component of ϕt is added to LLM:

(6)

(7)

(8)

where t = 1, 2, …, T; δt and ωt are independent and 
identically distributed. Equation (6) defined as the 
observation equation, Equations (7) and (8) represent the 
state equations. The addition of error term,  allows the 
variation of seasonal component over time. The seasonal 
pattern can be modelled for a specific period of time  
(s = 7 for weekly data; s = 12 for monthly data; s = 4 for 
quarterly data); let s as the months in year i and j as a 
specific month. 

DETECTION PROCEDURE USING INDICATOR  
SATURATION (IS)

The detection procedure using indicator saturation 
technique are summarized here. It is worth mentioning 
that the selection of retained indicator can be achieved 
using sequential and non-sequential selection algorithms. 
The sequential selection, which involves the elimination 
of one insignificant indicator at a time at a specific 
level of significance. On the other hand, non-sequential 
selection is another selection method that eliminates all 
insignificant indicators simultaneously in every block at a 
specific level of significance. This has been implemented 
using the R software package. In summary, the procedure 
takes the following form when indicators are added 
to T observations: 1) The indicators are divided into  

 = 2 blocks,  and ; 2) Estimation of parameters 
including the impulse indicators for both blocks using 
ordinary least square (OLS) method as shown in  
Figure 2(a) and Figure 2(c); 3) Selection of retained 
indicators using sequential or non-sequential approach 
at chosen significance level as presented in Figure 2(b) 
and Figure 2(d); 4) Run the model selection using GETS 
approach to obtain the terminal model in the first block; 5) 

FIGURE 2. The impulse indicator saturation algorithm depicted when 
the additive outlier located at t = 30 and t = 90



1621

Recommence steps 2 to 4 for second block; 6) Combine 
all the significant indicators retained from both blocks; 
and 7) Rerun the model selection on retained indicators to 
obtain the final terminal model as depicted in Figure 2(e).
Details procedure of IIS and SIS techniques are presented 
in Castle et al. (2015) and Che Rose, Ismail and Tumin 
(2021).

MONTE CARLO SIMULATION EXPERIMENTS

The performance of the IIS and SIS approach were 
assessed through Monte Carlo experiments. Various 
alternative settings are considered to examine the 
procedure’s robustness. Each experiment consists of  
M = 1000 replications. The following are specifications 
for the simulation settings for a reference data generating 
process (DGP): a) Sample size T = 120 observations 
were generated based on the state-space models;  
b) One additive outlier (AO) is located at the middle of the 
sample. Meanwhile, two AO’s were predetermined at the 
[0.25, 0.75] points as a proportion of observations, T; c) 
Target size or significance level, α = 0.1%, 1% and 2.5%. 
According to Mariscal and Powell (2014), these values 
will determine the statistical tolerance of the procedure. 
For example, a target of 0.01 for IIS indicates that on 
average, we accept 1 impulse dummy that may not be in 
the data generating process for every 100 observations; 
d) We labelled the magnitude of an AO as zσ where z is 
a positive integer. Meanwhile, σ is the prediction error 
standard deviation (PESD) of the series. The magnitude of 
AO varies between 3σ, 5σ, 7σ, 9σ, and 12σ; e) We apply 
the block-splitting algorithm by partitioning the indicator 
variables into six blocks to lower the variance of estimates; 
and f) The location of AO also varies based on the share of 
the sample. 

Overall, we measure the robustness of the model 
based on a few aspects: different components in  
state-space models, number of AO added, values of target 
size, magnitude of AO, and locations of the AO in the series. 
We utilize the principles of potency and gauge to evaluate 
the effectiveness of the procedure for identifying outliers. 
Potency refers to the ratio of pertinent indicators that are 
retained in the ultimate model, whereas gauge pertains to 
the ratio of irrelevant indicators that persist in the ultimate 
model. Both potency and gauge are computed based on the 
retention rate,  formulated as

(9)

(10)

(11)

where M denotes the number of replications and n denotes 
the number of true outliers in the time series of length 

T.  and  sets of time indices for relevant and 
irrelevant indicators retained in the model are denoted by 
and, respectively. The estimated coefficient in the impulse 
indicator is represented by , and if  is selected, then 
the variable  will be assigned a value of one, 
indicating that the argument is true, and zero otherwise. 
To determine the value of target size , 
we adhere to the rule of thumb recommended by Pretis, 
Reade and Sucarrat (2018). This approach ensures that the 
gauge value remains low, below 5% of the sample size 
T, or that only one irrelevant indicator variable is kept 
in the final model. Loose value of α leads to the case of  
over-fitting model, while stringent value of α leads to the case of  
under-fitting model.

MONTE CARLO SIMULATIONS RESULTS UNDER THE 
NULL HYPOTHESIS

This section aims to examine the performance of IIS and 
SIS in state-space models under the null hypothesis of no 
outliers. Overall, the Monte Carlo simulation experiment 
in this study consisted of two key parts. Firstly, this 
study evaluated the performance of IIS and SIS without 
the presence of outliers and structural breaks in the state 
space model framework. For the development of null 
hypotheses, this study proposed  for IIS and 

 for SIS. The selection of significant indicators 
retained in the model was based on αT at the selected level 
of significance, α. Secondly, the Monte Carlo simulations 
are conducted with the presence of predetermined additive 
outliers in the state space model framework.

The series were initially generated for T = 150 
observations. The first 30 observations were then removed 
to avoid the dependency on initial values, resulting in the 
following number of observations: T = 120 observations. 
Based on the obtained results, the retention frequencies 
of irrelevant indicators that were falsely retained in the 
model for the case of sequential selection algorithm 
were consistently close or below the considered level of 
significance. Such observation was apparent in all groups; 
the gauge values remained closer to and below the selected 
level of significance, α, particularly when α recorded 0.1% 
and 1/T. Based on the results from these Monte Carlo 
simulations, this study proved that the selected level of 
significance, α, controls the gauge values for each series 
generated in state-space models. It is important to select 
the appropriate α to reduce false-detection rate. Referring 
to Pretis, Reade and Sucarrat (2018), this study set 

, targeting only one irrelevant indicator that 
was falsely retained in the model by chance. The current 
study’s results also showed that the sequential selection 
algorithm produced consistently closer and lower gauge 
values to the selected α, as compared to the non-sequential 
selection algorithm. In other words, the performance of 
sequential selection algorithm surpasses the performance 
of non-sequential selection algorithm. For comparison, 
the case of sequential selection algorithm showed 
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better performance, with consistent lower gauge values 
than α. The case of non-sequential selection algorithm 
generated comparable performance, with certain gauge 
values exceeding the selected α in Figure 3. The use of  
non-sequential selection algorithm recorded gauge values 
with no differences of more than two-thousandths of 
percentage points. On the other hand, the use of sequential 
selection algorithm significantly reduced high retention 
frequencies, closer to α. In other words, the use of 
sequential selection algorithm was deemed more fitting at 
a less stringent level of significance level (i.e., α ≥ 5). 

MONTE CARLO SIMULATIONS RESULTS BASED ON 
POTENCY AND GAUGE

The Monte Carlo results for T = 120 observations are 
summarised in Tables 1 and 2. Overall, IIS+SIS performed 
well in detecting almost 100% of z values that are greater 
than 7 despite the inclusion of seasonal component. As we 
increased the target size value, the potency reached almost 
100%. We split the sample to m = 6 blocks to estimate 
the model. Based on the Monte Carlo results shown in  
Tables 1 and 2, it is obvious that the performance of 
IIS+SIS relies heavily on the magnitude of outliers even 
though different target sizes were used. The potency when  
z = 3 is relatively low with a satisfactory gauge value. 
However, when the size of z was increased to 7, the 
probability of the first detection is almost 100%. In  
non-sequential selection, number of blocks is a critical 
aspect that affected the performance of IIS+SIS in outlier 
and breaks detection. Thus, we decided to generate the 
results using six blocks for all generated series. A minimum 
number of blocks would minimise the risk of missing any 
essential structural changes. The potency achieved 100% 
when the size of AO is at least z = 7. This means that size of 
AO plays a vital role in outliers detection using both impulse 
and step indicators. When examined closely, we found that 

the average gauge values in sequential selection are much 
lower than in non-sequential selection. In fact, the gauge 
values for non-sequential selection exceed the sequential 
selection but still clustered around the significance level, 
α in most settings. Thus, sequential selection approach 
plays a crucial role in eliminating the indicator that is 
spuriously retained in the model. Through both cases of 
sequential and non-sequential selection algorithms, both 
types of indicators in this case clearly demonstrated good 
performance of detecting nearly 100% when λ ≥ 7σ. As 
the level of significance was set more stringent, the use 
of sequential selection algorithm produced substantially 
lower gauge values. In other words, the selected level 
of significance influences gauge of both sequential and 
non-sequential selection algorithms despite the varying 
magnitudes of AO.

Based on Table 2, the results on the detection of 
double AOs showed similar patterns of potency, in 
which the performance of sequential selection algorithm 
surpassed the performance of non-sequential selection 
algorithm. When λ = 3σ, the potency values for the case 
of sequential selection algorithm were significantly 
different from the potency values for the case of  
non-sequential selection algorithm, but the differences 
did not exceed forty percentage points. Meanwhile, when  
λ = 5σ, the performance of IIS+SIS was found excellent, 
with average potency values of above 85% for both selection 
algorithms. Based on these patterns, the magnitude of 
AOs has influence on the performance of IIS in terms of 
potency. On the other hand, when it comes to gauge values, 
for the case of sequential selection algorithm demonstrated 
excellent performance, as shown in Table 2. The observed 
gauge values did not exceed the selected α, which may be 
attributed to the use of multiple paths searching in reducing 
variances for estimators (Doornik, Hendry & Pretis 2013). 
For the case of non-sequential selection algorithm, IIS+SIS 
also showed excellent performance. The recorded gauge 

FIGURE 3. The retention rate of IIS+SIS for non-sequential and 
sequential selection algorithms
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values were close around the selected α. The use of a more 
stringent level of significance is more likely linked to 
lower potency for coefficients and higher critical value, ca. 
Meanwhile, when it comes to similar settings of λ = 3σ and 
0.1% level of significance, the observed gauge in this study 
exceeded α by two-thousandths percentage points. This 
may be attributed to model misspecification, specifically 
the case of under-fitting. Therefore, these observations 
were deemed plausible and expected when the level of 
significance was set more stringent.  

Tables 3 and 4 show the Monte Carlo results for single 
structural break and double structural breaks at different 
locations using six blocks estimation. The target size 
was chosen as  and magnitude of breaks was 7σ. 
We found a more satisfactory potency values when the 
structural change is in the middle of the sample compared 
to nearby the end of the sample. 

The combination of IIS and SIS recorded low gauge 
values that were close to the nominal level of significance, 
particularly when sequential selection algorithm was 
used. Based on these results, this study demonstrated 
the effectiveness of IIS and SIS in capturing irrelevant 
indicators in the model with respect to the null hypothesis. 

This study demonstrated the influence of the selected 
level of significance on the false-detection rate. The 
settings proposed by Pretis et al. (2016) were considered 
in the current study on the selection of appropriate level 
of significance, α = min {0.05, 1/T}. A higher level 
of significance (e.g., α ≤ 5%) potentially generates 
higher gauge values. Fundamentally, the selected level 
of significance ensures the formation of an over- or  
under-fitting model. Based on the results, it appears that 
an over-fitting model is more likely to occur at a less 
stringent level of significance, whereas an under-fitting 
model is more likely to occur at a more stringent level 
of significance. Considering numerous possible settings 
for the nominal level of significance, the current study 
recommended using the sequential selection algorithm 
when the selected level of significance is less stringent 
(e.g., 5%). Applying a more stringent level of significance 
also potentially results in lower potency for coefficients. 
When it comes to potency, the use of sequential selection 
algorithm produced better performance of IIS and SIS, as 
compared to the use of non-sequential selection algorithm 
when λ = 3σ. When λ = 5σ, the use of sequential selection 
algorithm significantly increased the average potency 

TABLE 1. Performance evaluation of IIS+SIS detecting single AO at various significance level in state-space models

Model Non-sequential Sequential
LLM α (%) 3σ 5σ 7σ 9σ 12σ 3σ 5σ 7σ 9σ 12σ

Potency (%) 0.1 16.1 66.2 83.7 96.3 100 39.7 75.6 97.6 99.8 100
1 47.1 89.5 99.1 100 100 50.1 92.5 99.7 99.9 100

2.5 57.6 93.7 99.3 100 100 64.2 96.7 100 100 100
Gauge (%) 0.1 0.03 0.05 0.01 0.03 0.02 0.03 0.03 0.03 0.01 0.02

1 0.93 0.87 0.86 0.97 0.82 0.58 0.47 0.52 0.41 0.36
2.5 2.27 2.19 2.24 2.16 2.22 1.08 0.88 0.78 0.61 0.91

LLTM α (%) 3σ 5σ 7σ 9σ 12σ 3σ 5σ 7σ 9σ 12σ
Potency (%) 0.1 23.7 70.7 90.1 99.7 99.9 47.9 81.8 98.9 99.9 100

1 44.7 86.4 98.1 99.8 100 55.8 94.3 99.7 100 100
2.5 59.3 92.1 99.0 99.9 100 69.7 96.7 99.9 100 100

Gauge (%) 0.1 0.21 0.19 0.15 0.10 0.11 0.08 0.05 0.02 0.00 0.00
1 0.98 0.67 0.51 0.69 0.58 0.55 0.27 0.18 0.32 0.14

2.5 2.03 1.69 1.72 1.67 1.74 1.56 0.28 1.16 1.15 1.29
LLTSM α (%) 3σ 5σ 7σ 9σ 12σ 3σ 5σ 7σ 9σ 12σ

Potency (%) 0.1 17.9 69.5 88.1 96.2 99.7 67.1 88.5 98.4 99.6 100
1 49.7 88.1 94.7 97.0 100 71.9 92.7 100 100 100

2.5 38.8 83.7 98.6 98.3 100 73.7 96.4 100 100 100
Gauge (%) 0.1 0.23 0.20 0.14 0.08 0.02 0.06 0.09 0.05 0.03 0.01

1 0.82 0.72 0.57 0.35 0.20 0.62 0.59 0.79 0.33 0.37
2.5 2.51 2.67 2.55 2.49 2.36 1.22 1.76 1.59 1.44 1.27
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TABLE 2. Performance evaluation of IIS+SIS detecting double AO at various significance level in state-space models

    Non-sequential Sequential
LLM α (%) 3σ 5σ 7σ 9σ 12σ 3σ 5σ 7σ 9σ 12σ

Potency (%) 0.1 19.2 74.6 94.7 99.6 100 55.3 84.7 98.7 99.8 100
1 48.4 89.5 99.8 99.9 100 74.8 95.7 99.7 99.9 100

2.5 68.5 93.1 98.6 100 100 79.3 97.5 100 100 100
Gauge (%) 0.1 0.05 0.07 0.08 0.07 0.05 0.04 0.02 0.03 0.02 0.00

1 0.98 0.83 0.87 0.76 0.71 0.87 0.73 0.70 0.59 0.56
2.5 1.98 1.84 1.10 0.52 0.14 1.02 1.12 1.28 1.16 1.22

LLTM α (%) 3σ 5σ 7σ 9σ 12σ 3σ 5σ 7σ 9σ 12σ
Potency (%) 0.1 22.8 72.1 92.7 98.9 99.9 64.7 92.6 97.6 99.8 100

1 49.7 89.2 98.8 99.9 100 77.3 92.4 99.7 100 100
2.5 60.1 93.5 99.6 100 100 80.1 95.5 99.9 100 100

Gauge (%) 0.1 0.08 0.07 0.03 0.03 0.03 0.02 0.07 0.06 0.02 0.01
1 0.84 0.69 0.51 0.49 0.22 0.78 0.61 0.33 0.26 0.16

2.5 2.33 2.29 2.18 2.25 2.31 1.14 1.29 1.21 1.08 1.02
LLTSM α (%) 3σ 5σ 7σ 9σ 12σ 3σ 5σ 7σ 9σ 12σ

Potency (%) 0.1 18.5 41.6 73.8 90.1 98.5 67.9 93.2 98.0 100 100
1 25.1 68.5 89.9 96.4 99.4 48.6 92.7 99.3 100 100

2.5 44.6 75.9 92.0 97.8 99.9 85.4 98.3 100 100 100
Gauge (%) 0.1 0.07 0.06 0.07 0.05 0.01 0.07 0.09 0.04 0.00 0.00

1 1.12 1.02 1.09 0.78 0.59 0.21 0.11 0.18 0.37 0.15
2.5 3.28 3.74 3.13 3.28 3.05 0.18 0.28 0.33 0.21 0.83

TABLE 3. Potency and gauge values for single structural breaks at various locations 

Location of AO 0.1 0.3 0.5 0.7 0.9
Potency (%) 97.9 98.9 99.5 98.9 97.9
Gauge (%) 0.01 0.01 0.01 0.01 0.01

TABLE 4. Potency and gauge values for double structural breaks at various locations 

Location of double AO [0.1,0.2] [0.3,0.4] [0.5,0.6] [0.7,0.8] [0.9,1]
Potency (%) 99.5 99.05 99.65 98.25 97.35
Gauge (%) 0.3525 0.1780 0.0805 0.1237 0.3576

to 90%. The performance of IIS in detecting relevant 
indicators was found to be perfect when λ > 5σ. In other 
words, higher magnitude of outliers and structural breaks 
enhances the effectiveness of IIS and SIS. This may be 
attributed to the iterative removal of the least significant 
indicators, which substantially lowers the variance of the 
estimator and number of irrelevant indicators retained 

and raises the retention frequencies of relevant indicators. 
Conclusively, the use of different variance parameters and 
number of observations in each DGP were found to have 
no influence on the effectiveness of the current study’s IIS 
and SIS in capturing the true outlier. On the other hand, the 
magnitude of outliers and structural breaks clearly affected 
the potency of the study’s IIS and SIS.
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EMPIRICAL APPLICATIONS

Detection of outliers has essential effects on economic 
time series data for parameter estimation and forecasting 
purposes. We apply the indicator saturation approach to 
the monthly FTSE 100 closing stock price index obtained 
from Datastream. The reference model framework for this 
application is the local linear trend model with seasonal 
component. The data covers the period from October 2013 
until October 2023, consisting of 120 observations, T. 

This section presents the results of diagnostics tests 
following the application the structural time series model 
using actual data. Firstly, the FTSE 100 stock price were 
analysed based on Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) to examine whether 
the data fit to the structural time series model. For the 
analysis, return values, rt, of the FTSE 100 closed price 
data were determined from the log difference of monthly 
stock prices. Accordingly, residuals in the structural time 
series model are generally assumed to be independent and 
normally distributed, with the attribute of homoscedasticity. 
Therefore, the current study performed the following 
diagnostics tests to examine whether the residuals meet 
these respective properties: (1) Durbin-Watson test; (2) 
homoscedasticity test; (3) normality test. Overall, the 
diagnostic tests results appear satisfactory for every model. 
It can be seen that most of the values of autocorrelations at 
lag 1 converge to zero indicating weak positive correlation 
among residuals. Moreover, the Durbin-Watsons statistics 
values are clustered around 2 indicating the same correlation 
between residuals. The H-statistics indicate the variances of 
two consecutive and equal parts of the residuals are equal. 
For instance, in Table 5, the test shows that the variance of 
the 52 elements of the residuals is unequal to the variance 
of the last 52 elements of the residuals. Summarising, 
the assumptions of independence, homoscedasticity and 
normality are all satisfied for FTSE 100. When comparing 
the info criterion values, this study holds the rule of  
thumb: the smaller values denote better fitting models 
than larger ones. Overall, the AIC and BIC values are 
approximately the same for the local level model.

The selection of significant level is governed by  
which manifests that generally less than one indicator being 
remained spuriously under the null of no outliers. We split 
the blocks into six with multi-path indicator saturation. 
The objective of this application is to assess how indicator 
saturation, specifically IIS+SIS depicts recessionary events 
triggered by financial crises around the world, especially 
during the COVID-19 pandemic in 2020. As expected, the 
results show that structural changes are detected during 
the year 2020. Interestingly, we found that the structural 
changes detected in 2020 are negatively associated with the 
global economic recession that occurred due to COVID-19 
pandemic. This result is consistent with previous 
occurrences of financial crises, which IIS+SIS interprets as 
recessions. 

This study postulates that the structural breaks will 
be detected in FTSE 100 during the year 2020 as shown 
in Figure 4. Such a result should not come as a surprise 
given the major regime changes happened globally over 
the period of 2020–2021. Hence, parameter estimation in 
GETS modelling can be done by taking into account the 
outliers detected by IIS and SIS in the model estimation. 
This particular study distinguishes itself from the 
research conducted by Bakar (2019) due to the presence 
of methodological deficiencies. These deficiencies were 
mainly attributed to the Box-Whisker plot’s inability to 
effectively handle non-stationary data and adequately 
represent the structural change identified in the FTSE 100. 
Furthermore, in contrast to the IIS+SIS in GETS modelling, 
the Box-Whisker plot approach lacks the capability to 
conduct significance testing. Hence, the final selected 
model is reported using the Autometrics algorithm. The 
procedure of model selection began with the general 
unrestricted model, then selecting the significant regressors 
which will be retained in the model. The model estimation 
was over the period October 2013 until October 2023 
where the impulse indicators as {1{j = t}} where {1{j = t}} 
corresponds to one when j = t and equal to zero otherwise 
for j = 1, … , T. Meanwhile the steps indicators is in the 
form {1{j ≥ t}}. This research estimates the simple model 
of closed price for FTSE 100 as in Equation (6) including 
the IIS+SIS at a target significance level . This 
implies that an expected of false positive the number of 
breaks detected of The resulting 
model captured two breaks in the log of monthly closed 
price for FTSE 100 in the year 2020. 

(12)

where  is the log of monthly closed price for FTSE 100, 
 and  are the smoothed estimates of the trend and 

irregular components. Referring to Equation (12), the 
coefficients for the structural breaks at  
and  are estimated at  
and , respectively. The magnitude of the 
structural breaks was quantified based on the estimated 
prediction error variance of the model,  
The magnitude of structural break is expressed in term 
of estimated error variance, Hence, the two 
structural breaks detected has magnitude of  and 
152.63 . Likewise, the coefficients for the structural 
breaks at  and  are estimated 
at  and , respectively. 
Thus, the breaks have magnitude of 47.36  and  
57.89 . Overall, this finding highlights the novel aspect 
of this research to identify the magnitude, location, and 
sign of the breaks immediately at the start of the sample 
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observation until the end in state-space model framework. 
This finding may lead to better understanding of how the 
stock markets in the UK reacts to government policy due to 
the COVID-19 pandemic. The results also indicate that it is 
possible to quantify the impact of a structural change at a 
specific date on the stock markets. 

CONCLUSIONS

Our study aimed to examine the ability of impulse and 
steps indicator saturation in detecting structural breaks in 
state-space models. The performance of IIS and SIS was 
measured using potency and gauge via extensive Monte 
Carlo experiments. Hence, we conclude that IIS+SIS are 
very useful in detecting structural breaks. This research 
has made a substantial contribution to providing a novel 
approach for detecting structural breaks and outliers 
simultaneously.

We discovered a few aspects that can affect the 
performance of IIS+SIS. First, the size and magnitude of 

FIGURE 4. Log of monthly closed price of FTSE 100 from October 
2013 to October 2023

TABLE 5. Diagnostic statistics tests results for FTSE 100 closed price

Statistics LLM
Independence DW 1.766

r(1) 0.1032
Homoscedasticity H(h) H(52) 2.084
Normality N 70.929
Information Criterion AIC 7.4701

BIC 7.5088

AO. IIS becomes more effective as the size of AO increases 
starting from z = 5. Secondly, the target size chosen also 
affects the potency value as it determines the number of 
irrelevant indicators to be retained in the model. Next, the 
number of blocks is also an important factor in IIS+SIS 
performance. Fourth, IIS+SIS performs better in detecting 
single AO compared to double AO in terms of potency 
above 80%. Finally, the location of AO plays a vital role 
in the performance of IIS+SIS. We found that the potency 
achieved its maximum of 100% when the location of AO 
is in the middle of the sample. In the last part of the work, 
we applied IIS+SIS to the monthly stock returns of FTSE 
100 with the aim to investigate the application of IIS+SIS 
to depict the global recession movement that affected the 
FTSE 100. Overall, IIS+SIS is proven effective in detecting 
structural breaks in the state-space model. Even though IIS 
is initially designed to detect outliers, it is also capable to 
detect single location shift using split-half approach when 
a single location shift exists in a series. 
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Further research might delve into quantitative 
comparisons with other models, refining the algorithm’s 
parameters to accommodate varying data characteristics, 
contributing to its versatility in anomaly detection 
scenarios. Finally, trend indicator saturation (TIS) may be 
utilized in state spaces models to capture any structural 
change that happened.
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