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ABSTRACT

The presence of extreme structural change in a sequence of data points over time may have a detrimental impact on the
estimation of economic and financial indicators. Anomalies caused by these extreme values can distort the estimated
parameters, diminish the accuracy of the time series model, and potentially lead to inaccurate forecasts. In this research,
a general-to-specific modeling approach is utilized to identify the structural changes through indicator saturation within
the framework of a state-space models as an alternative to current method. By focusing on impulse and steps indicator
saturation, this study evaluates their effectiveness through Monte Carlo simulations that are replicated 1000 times. The
Monte Carlo experiments demonstrate that the efficiency of indicator saturation is heavily dependent on factors such as
the magnitude of the structural change, the level of statistical significance, and the position of an extreme value within the
series. Subsequently, this study employs the combined impulse and steps indicator saturation to detect structural breaks
in the FTSE 100 daily closed stock price index. The most important findings relate to the coefficients for the structural
breaks at t = 2020.M1 and t = 2020.M3 are estimated at £, _ 5901 = 0.16 and B, _ 502043 = —0.29, respectively.
The findings show that the characteristics, position, and direction of the extreme values detected by impulse indicator
saturation coincide with the occurrence of the COVID-19 pandemic, which has had a global impact on economic activities.
This finding may lead to better understanding of how the stock markets in UK reacts to government policy due to the
COVID-19 pandemic.
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ABSTRAK

Kehadiran perubahan struktur yang ketara dalam satu data siri masa boleh memberi kesan buruk terhadap penganggaran
penunjuk ekonomi dan kewangan. Nilai melampau yang menyebabkan anomali boleh memesongkan parameter yang
dianggarkan, mengurangkan ketepatan model siri masa dan berpotensi menghasilkan ramalan yang tidak tepat. Dalam
kajian ini, pendekatan pemodelan umum kepada khusus digunakan untuk mengenal pasti perubahan struktur melalui
petunjuk ketepuan dalam kerangka model ruang keadaan sebagai alternatif kepada kaedah semasa. Dengan memberi
tumpuan kepada petunjuk ketepuan impuls dan langkah, kajian ini menilai keberkesanannya melalui simulasi Monte
Carlo yang diulang sebanyak 1000 kali. Uji kaji Monte Carlo menunjukkan bahawa kecekapan ketepuan penunjuk sangat
bergantung kepada faktor seperti magnitud perubahan struktur, tahap signifikan statistik dan kedudukan nilai ekstrem
dalam siri data tersebut. Seterusnya, kajian ini menggunakan gabungan ketepuan penunjuk impuls dan langkah untuk
mengesan perubahan struktur dalam indeks harga penutup harian FTSE 100. Penemuan paling penting berkaitan dengan
pekali bagi perubahan struktur pada penemuan ini menunjukkan bahawa ciri, kedudukan dan arah nilai melampau yang
dikesan oleh ketepuan penunjuk impuls bertepatan dengan berlakunya pandemik COVID-19, yang telah memberi kesan
global terhadap aktiviti ekonomi. Penemuan ini boleh membawa kepada pemahaman yang lebih baik tentang bagaimana
pasaran saham di UK bertindak balas terhadap dasar kerajaan akibat pandemik COVID-19.

Kata kunci: Monte Carlo; pemilihan model; perubahan struktur; petunjuk ketepuan; umum kepada tertentu
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INTRODUCTION

Time series data are predominantly observational in nature.
Structural changes within time series can significantly
impact the estimation of models, primarily employed for
economic and financial indicators. Outlier and structural
breaks are the example of the structural changes in time
series data. The sources structural changes may stem from
extraordinary events such as warfare, pandemics, policy
modifications, or natural disasters (Castle, Hendry &
Martinez 2023). The presence of such structural changes
consistently raises critical concerns regarding the accuracy
and efficiency of model parameter estimations. Failing to
account for these outliers or structural breaks can result
in the misclassification of a distribution as fat-tailed
when it is a thin-tailed distribution. Furthermore, Castle
and Hendry (2019) demonstrated that neglecting existing
structural changes in models leads to excessively wide
interval forecasts. Unanticipated events can trigger forecast
failures, causing actual outcomes to deviate significantly
from forecasted values, measured in standard errors. These
forecast failures are often attributed to location shifts in the
time series data after the forecasts have been made. The
implications of forecast failure extend to decision-making
and policy formation, potentially leading to poor decisions
and misguided policies.

Numerous methods available in the literature
including statistical, regression based and machine
learning approaches. Statistical based techniques such as
Z-score, modified Z-score and interquartile range require
sufficient information on the dataset. The application of
outlier detection algorithm has been extensively explored
in real applications such as in engineering, oil and gas,
fraud detection and image processing (Alimohammadi
& Nancy Chen 2022; Huang, Cheng & Zhang 2023;
Sewwandi, Li & Zhang 2024; Shao et al. 2022; Yu et al.
2014). Machine learning techniques, like classification
algorithms, detect outliers by identifying data outside
the decision boundary (Bergman & Hoshen 2020) with
recent study by Vishwakarma, Paul and Elsawah (2020)
exploring neural network algorithm to detect outliers
in univariate time series. Another study conducted by
Uzabaci, Ercan and Alpu (2020) proposed two machine
learning techniques to identify outliers viz blocked adaptive
computationally efficient outlier nominators (BACON)
and fast minimum covariance determinant (FAST-MCD)
algorithms for multivariate datasets. However, these
methods primarily identify outlier locations and often fail
to estimate model parameters accurately in the presence
of outliers. Additionally, machine learning algorithms are
computationally expensive, require minimum thresholds
for dataset size or distance, and perform poorly with small
datasets (Alimohammadi & Nancy Chen 2022). To address
these limitations, we propose using the indicator saturation
technique within a GETS framework, as supported by
recent studies on its application to detect outliers and
structural breaks (Castle & Kurita 2021; Castle, Doornik &
Hendry 2012, 2011; Pellini 2021).

Impulse indicator saturation (IIS) and step indicator
saturation (SIS) are the two types of indicator saturation
technique proposed by Hendry (1999). Both types involve
adding a binary set of dummy variables each corresponding
to a single observation, and including these indicators in
a regression model. The performance of the IIS and SIS
were excellent when applied to basic structural time series.
However, this particular analysis has only been conducted
by Marczak and Proietti (2016). Many issues highlighted
here remain unexplored in the literature about the
performance of indicator saturation in state space models.
The complete potential of this approach has yet to be
confirmed; therefore, our attention is directed towards the
local level model (LLM) including the slope (LLTM) and
seasonal component (LLTSM). State-space models provide
a robust framework for detecting outliers and structural
breaks, including through methods like IIS and SIS. These
models are characterized by random disturbances around
an underlying level, making them ideal for analysing
fluctuations and identifying deviations. While the standard
approach relies on auxiliary residuals for detection
(Durbin & Koopman 2012), it requires prior information
about the location of potential outliers or breaks. By
integrating I1S and SIS with state-space methods, we aim to
overcome this limitation and improve detection accuracy.

This study is conducted to immediately detect outliers
or structural breaks in a series to avoid misspecification of
estimation and distortion of forecast accuracy. Specifically,
combination of IIS and SIS are used to detect structural
change when they are near to the forecast origin. This is
done by applying the IIS proposed by Hendry (1999) to
identify the unknown amount, location, and magnitude of
outliers in the series examined. IIS works by annexing a set
of dummy variables as an intervention for each observation
in the series. A plethora of studies on this approach can be
found in Castle, Doornik and Hendry (2012, 2011), Castle
et al. (2015), Johansen and Nielsen (2009), Marczak
and Proietti (2016), and Santos, Hendry and Johansen
(2008), using Autometrics embodied in OxMetrics as a
computational tool to perform GETS algorithm. Although
similar approach was used by Marczak and Proietti
(2016), this work differs in the way it handles the dummy
indicators in state-space models by combining impulse
and steps indicators in the model estimation. To the best
of our knowledge, the performance of IIS+SIS integrated
with the state-space models has not been scrutinized yet.
This combination offers several advantages over existing
methods. Unlike traditional approaches that require prior
information about the location of outliers or structural
breaks, IIS and SIS systematically test for these structural
changes across all potential time points, making the process
more robust and automated. Hence, this study is one of the
first attempts to thoroughly examine the performance of
IIS and SIS in the context of the state-space models by
assessing the potency and gauge values. Further, we apply
the I1S+SIS to detect any structural change in stock price
series, specifically FTSE 100.



The subsequent part of this investigation is organized
as follows. In the methodology section, an in-depth
examination of the structure for the state-space models in
outlier detection is provided, along with the presentation
of the indicator saturation concepts within the state-space
framework. Next, the section commences by outlining
the simulation settings for the Monte Carlo experiment,
followed by a summary of the performance of Monte
Carlo simulations on the detection power of IIS+SIS. In the
empirical applications section, IS and SIS are subsequently
employed to the actual stock price data to identify outlier or
structural breaks. Last section brings the paper to a close.

METHODOLOGY

This section summarized the whole procedure of outlier
detection algorithm in state-space framework as illustrated
in Figure 1. Firstly, the procedure started with generating
an artificial time series dataset based on the state-space
models. Then, the series was contaminated with the additive
outlier (AO) for performance evaluation purposes. This
is followed by the Monte Carlo simulation experiments
replicated at M = 1000 times. The performance of indicator
saturation was measured using potency and gauge metrics.
Finally, the application of IIS and SIS to a real dataset to
capture the outlier in stock price data.
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STATE-SPACE MODELS

The simplest form of state space model is local level
model (LLM). The model consists of level component
which varies over time. The level component acts as an
intercept in the classical regression model. The LLM can
be formulated as

£.~NID(0,62) (1)

(@)

Ve = M + &g,

fesy = fte + @, @~NID(0,62)
for t =1,2,...,T where [i; is the unobserved level
component at time 7, £, is the irregular component at time ¢,
and @y is the level disturbance at time ¢. The &; and w; are
all assumed to be independent and identically distributed
with zero mean and variances 0'52 and 0'02), respectively.
Equation (1) is defined as the observation equation and
Equation (2) is defined as the transition state equation.
The transition equation shows the fundamental values
based on a random walk. The component €; is defined
as noise and assumed to be independent and identically
distributed. In this study, we define the signal-to-noise
ratio as q = 62 /0'52. Thus, the local level model also
can be referred to as the random walk plus noise model
(Harvey & Koopman 2000).

h 4

Generating the artificial time series data
based on the state-space models

h 4

Contaminating the series with additive
outliers and breaks

. 4

Designing the Monte Carlo experiments

h 4

Evaluation of performance for indicator
saturation technique

h 4

\

Empirical applications of IIS and SIS to real
dataset

.

FIGURE 1. Summary of the performance evaluation and
application of indicator saturation
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Local linear trend model is an extension of LLM, by
adding the slope component, V; to the local level model. In
this model, both level and slope vary over time. Hence, the
local linear trend model (LLTM) is formulated as follows:

Ve = Ue T &gy g~NID(0, 0'.52) 3)
Hes1 = U T Ve t+ g, wthID(O,of)) “4)
Ves1 =V + ¥, @, ~NID(0,07) (5)

where t = 1, 2, ..., T; @, and Y, are independent and
identically distributed. With equation (3) as the observation
equation, Equations (4) and (5) represent the state equations.
In particular, fi; remains as the trend component, and Vv
as the slope of trend component, differs from the slope of
classic regression line. Therefore, V¢ cannot be conceived
as the coefficient of regressors in linear regression model
when @y and Y, equal to zero.

Seasonal effect refers to the recurring pattern in time
series within a specific period of time. In state-space
models, seasonal effect can be modelled by adding the
seasonal component, either in LLM or LLTM. Then, it
can be formulated as follows; for simplicity, the seasonal
component of ¢, is added to LLM:

Ve =l + P + 5y, g.~N(0, 0'52) (6)

Hesr = He + 6, 5:”“N(O: 0'32) (7

s—1
— 2
Pes1 = § Griqgj + e, w,~N(0,07) (8)
i=1
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where t = 1, 2, ..., T; J,and w, are independent and
identically distributed. Equation (6) defined as the
observation equation, Equations (7) and (8) represent the
state equations. The addition of error term, ¢, allows the
variation of seasonal component over time. The seasonal
pattern can be modelled for a specific period of time
(s = 7 for weekly data; s = 12 for monthly data; s = 4 for
quarterly data); let s as the months in year i and j as a
specific month.

DETECTION PROCEDURE USING INDICATOR
SATURATION (IS)

The detection procedure using indicator saturation
technique are summarized here. It is worth mentioning
that the selection of retained indicator can be achieved
using sequential and non-sequential selection algorithms.
The sequential selection, which involves the elimination
of one insignificant indicator at a time at a specific
level of significance. On the other hand, non-sequential
selection is another selection method that eliminates all
insignificant indicators simultaneously in every block at a
specific level of significance. This has been implemented
using the R software package. In summary, the procedure
takes the following form when indicators are added
to T observations: 1) The indicators are divided into
b = 2 blocks, b; and b,; 2) Estimation of parameters
including the impulse indicators for both blocks using
ordinary least square (OLS) method as shown in
Figure 2(a) and Figure 2(c); 3) Selection of retained
indicators using sequential or non-sequential approach
at chosen significance level as presented in Figure 2(b)
and Figure 2(d); 4) Run the model selection using GETS
approach to obtain the terminal model in the first block; 5)
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FIGURE 2. The impulse indicator saturation algorithm depicted when
the additive outlier located at = 30 and ¢ = 90



Recommence steps 2 to 4 for second block; 6) Combine
all the significant indicators retained from both blocks;
and 7) Rerun the model selection on retained indicators to
obtain the final terminal model as depicted in Figure 2(e).
Details procedure of IIS and SIS techniques are presented
in Castle et al. (2015) and Che Rose, Ismail and Tumin
(2021).

MONTE CARLO SIMULATION EXPERIMENTS

The performance of the IIS and SIS approach were
assessed through Monte Carlo experiments. Various
alternative settings are considered to examine the
procedure’s robustness. Each experiment consists of
M = 1000 replications. The following are specifications
for the simulation settings for a reference data generating
process (DGP): a) Sample size 7" = /20 observations
were generated based on the state-space models;
b) One additive outlier (AO) is located at the middle of the
sample. Meanwhile, two AO’s were predetermined at the
[0.25, 0.75] points as a proportion of observations, 7 c)
Target size or significance level, o = 0.1%, 1% and 2.5%.
According to Mariscal and Powell (2014), these values
will determine the statistical tolerance of the procedure.
For example, a target of 0.01 for IIS indicates that on
average, we accept 1 impulse dummy that may not be in
the data generating process for every 100 observations;
d) We labelled the magnitude of an AO as zc where z is
a positive integer. Meanwhile, ¢ is the prediction error
standard deviation (PESD) of the series. The magnitude of
AO varies between 30, 50, 70, 90, and 12c; ) We apply
the block-splitting algorithm by partitioning the indicator
variables into six blocks to lower the variance of estimates;
and f) The location of AO also varies based on the share of
the sample.

Overall, we measure the robustness of the model
based on a few aspects: different components in
state-space models, number of AO added, values of target
size, magnitude of AO, and locations of the AO in the series.
We utilize the principles of potency and gauge to evaluate
the effectiveness of the procedure for identifying outliers.
Potency refers to the ratio of pertinent indicators that are
retained in the ultimate model, whereas gauge pertains to
the ratio of irrelevant indicators that persist in the ultimate
model. Both potency and gauge are computed based on the
retention rate, ¥ formulated as

1 — .
F=o i 1B, #0], j=1,...T 9)
potency = %Ej?}‘, JjeR, (10)

I oo
gauge = —¥;%, jeRr—y (an

where M denotes the number of replications and » denotes
the number of true outliers in the time series of length
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T. R, and Ry_, sets of time indices for relevant and
irrelevant indicators retained in the model are denoted by
and, respectively. The estimated coefficient in the impulse
indicator is represented by f,, and if I.(k) is selected, then
the variable 1[g; + 0] will be assigned a value of one,
indicating that the argument is true, and zero otherwise.
To determine the value of target size a = min[0.05,1/;]
we adhere to the rule of thumb recommended by Pretis,
Reade and Sucarrat (2018). This approach ensures that the
gauge value remains low, below 5% of the sample size
T, or that only one irrelevant indicator variable is kept
in the final model. Loose value of « leads to the case of
over-fittingmodel,whilestringentvalueofaleadstothecaseof
under-fitting model.

MONTE CARLO SIMULATIONS RESULTS UNDER THE
NULL HYPOTHESIS

This section aims to examine the performance of IIS and
SIS in state-space models under the null hypothesis of no
outliers. Overall, the Monte Carlo simulation experiment
in this study consisted of two key parts. Firstly, this
study evaluated the performance of IIS and SIS without
the presence of outliers and structural breaks in the state
space model framework. For the development of null
hypotheses, this study proposed Hy: 8, = 0, Vt for IIS and
Hy:6; = 0,1 for SIS. The selection of significant indicators
retained in the model was based on a7 at the selected level
of significance, a. Secondly, the Monte Carlo simulations
are conducted with the presence of predetermined additive
outliers in the state space model framework.

The series were initially generated for T = 150
observations. The first 30 observations were then removed
to avoid the dependency on initial values, resulting in the
following number of observations: T = 120 observations.
Based on the obtained results, the retention frequencies
of irrelevant indicators that were falsely retained in the
model for the case of sequential selection algorithm
were consistently close or below the considered level of
significance. Such observation was apparent in all groups;
the gauge values remained closer to and below the selected
level of significance, a, particularly when o recorded 0.1%
and 1/T. Based on the results from these Monte Carlo
simulations, this study proved that the selected level of
significance, o, controls the gauge values for each series
generated in state-space models. It is important to select
the appropriate o to reduce false-detection rate. Referring
to Pretis, Reade and Sucarrat (2018), this study set
@ = min {%,5% }, targeting only one irrelevant indicator that
was falsely retained in the model by chance. The current
study’s results also showed that the sequential selection
algorithm produced consistently closer and lower gauge
values to the selected o, as compared to the non-sequential
selection algorithm. In other words, the performance of
sequential selection algorithm surpasses the performance
of non-sequential selection algorithm. For comparison,
the case of sequential selection algorithm showed
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FIGURE 3. The retention rate of 11S+SIS for non-sequential and
sequential selection algorithms

better performance, with consistent lower gauge values
than a. The case of non-sequential selection algorithm
generated comparable performance, with certain gauge
values exceeding the selected a in Figure 3. The use of
non-sequential selection algorithm recorded gauge values
with no differences of more than two-thousandths of
percentage points. On the other hand, the use of sequential
selection algorithm significantly reduced high retention
frequencies, closer to a. In other words, the use of
sequential selection algorithm was deemed more fitting at
a less stringent level of significance level (i.e., a > 5).

MONTE CARLO SIMULATIONS RESULTS BASED ON
POTENCY AND GAUGE

The Monte Carlo results for 7 = /20 observations are
summarised in Tables 1 and 2. Overall, [IS+SIS performed
well in detecting almost 100% of z values that are greater
than 7 despite the inclusion of seasonal component. As we
increased the target size value, the potency reached almost
100%. We split the sample to m = 6 blocks to estimate
the model. Based on the Monte Carlo results shown in
Tables 1 and 2, it is obvious that the performance of
I1S+SIS relies heavily on the magnitude of outliers even
though different target sizes were used. The potency when
z = 3 is relatively low with a satisfactory gauge value.
However, when the size of z was increased to 7, the
probability of the first detection is almost 100%. In
non-sequential selection, number of blocks is a critical
aspect that affected the performance of 1IS+SIS in outlier
and breaks detection. Thus, we decided to generate the
results using six blocks for all generated series. A minimum
number of blocks would minimise the risk of missing any
essential structural changes. The potency achieved 100%
when the size of AO is at least z= 7. This means that size of
AO plays a vital role in outliers detection using both impulse
and step indicators. When examined closely, we found that

the average gauge values in sequential selection are much
lower than in non-sequential selection. In fact, the gauge
values for non-sequential selection exceed the sequential
selection but still clustered around the significance level,
o in most settings. Thus, sequential selection approach
plays a crucial role in eliminating the indicator that is
spuriously retained in the model. Through both cases of
sequential and non-sequential selection algorithms, both
types of indicators in this case clearly demonstrated good
performance of detecting nearly 100% when A > 7c. As
the level of significance was set more stringent, the use
of sequential selection algorithm produced substantially
lower gauge values. In other words, the selected level
of significance influences gauge of both sequential and
non-sequential selection algorithms despite the varying
magnitudes of AO.

Based on Table 2, the results on the detection of
double AOs showed similar patterns of potency, in
which the performance of sequential selection algorithm
surpassed the performance of non-sequential selection
algorithm. When A = 30, the potency values for the case
of sequential selection algorithm were significantly
different from the potency values for the case of
non-sequential selection algorithm, but the differences
did not exceed forty percentage points. Meanwhile, when
A = 50, the performance of 1IS+SIS was found excellent,
with average potency values of above 85% for both selection
algorithms. Based on these patterns, the magnitude of
AOs has influence on the performance of 1IS in terms of
potency. On the other hand, when it comes to gauge values,
for the case of sequential selection algorithm demonstrated
excellent performance, as shown in Table 2. The observed
gauge values did not exceed the selected a, which may be
attributed to the use of multiple paths searching in reducing
variances for estimators (Doornik, Hendry & Pretis 2013).
For the case of non-sequential selection algorithm, IIS+SIS
also showed excellent performance. The recorded gauge



values were close around the selected a. The use of a more
stringent level of significance is more likely linked to
lower potency for coefficients and higher critical value, c .
Meanwhile, when it comes to similar settings of A = 3¢ and
0.1% level of significance, the observed gauge in this study
exceeded a by two-thousandths percentage points. This
may be attributed to model misspecification, specifically
the case of under-fitting. Therefore, these observations
were deemed plausible and expected when the level of
significance was set more stringent.

Tables 3 and 4 show the Monte Carlo results for single
structural break and double structural breaks at different
locations using six blocks estimation. The target size
was chosen as ¢ = 1/T and magnitude of breaks was 7c.
We found a more satisfactory potency values when the
structural change is in the middle of the sample compared
to nearby the end of the sample.

The combination of 1IS and SIS recorded low gauge
values that were close to the nominal level of significance,
particularly when sequential selection algorithm was
used. Based on these results, this study demonstrated
the effectiveness of IIS and SIS in capturing irrelevant
indicators in the model with respect to the null hypothesis.
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This study demonstrated the influence of the selected
level of significance on the false-detection rate. The
settings proposed by Pretis et al. (2016) were considered
in the current study on the selection of appropriate level
of significance, o = min {0.05, 1/T}. A higher level
of significance (e.g., o < 5%) potentially generates
higher gauge values. Fundamentally, the selected level
of significance ensures the formation of an over- or
under-fitting model. Based on the results, it appears that
an over-fitting model is more likely to occur at a less
stringent level of significance, whereas an under-fitting
model is more likely to occur at a more stringent level
of significance. Considering numerous possible settings
for the nominal level of significance, the current study
recommended using the sequential selection algorithm
when the selected level of significance is less stringent
(e.g., 5%). Applying a more stringent level of significance
also potentially results in lower potency for coefficients.
When it comes to potency, the use of sequential selection
algorithm produced better performance of IIS and SIS, as
compared to the use of non-sequential selection algorithm
when A = 36. When A = 50, the use of sequential selection
algorithm significantly increased the average potency

TABLE 1. Performance evaluation of 1IS+SIS detecting single AO at various significance level in state-space models

Model Non-sequential Sequential
LLM a (%) 30 5o 70 9c 120 30 5c 70 9¢ 120
Potency (%) 0.1 16.1 662 837 963 100 397 756 97.6 99.8 100
1 47.1 89.5 991 100 100  50.1 925 99.7 999 100
2.5 57.6 937 993 100 100 642  96.7 100 100 100
Gauge (%) 0.1 0.03 0.05 001 003 0.02 003 003 003 001 0.02
1 0.93 087 086 097 082 058 047 052 041 036
2.5 2.27 219 224 216 222 108 088 078 0.61 0091
LLTM a (%) 30 5o 70 9c 120 30 5o 70 9¢ 120
Potency (%) 0.1 23.7 70.7 90.1 99.7 999 479 81.8 989 999 100
1 44.7 864 981 99.8 100 558 943 99.7 100 100
2.5 59.3 921 990 999 100 69.7 967 999 100 100
Gauge (%) 0.1 0.21 0.19 0.15 0.10 0.11 008 005 0.02 000 0.00
1 0.98 0.67 051 069 058 055 027 018 032 0.14
2.5 2.03 1.69 172 167 174 156 028 116 1.15 129
LLTSM a (%) 30 5c 7o 9c 120 30 5c 7o 9¢ 120
Potency (%) 0.1 17.9 69.5 881 962 99.7 67.1 88.5 984 99.6 100
1 49.7 88.1 947 97.0 100 719 927 100 100 100
2.5 38.8 837 986 983 100 737 964 100 100 100
Gauge (%) 0.1 0.23 020 0.14 008 0.02 006 009 005 0.03 0.01
1 0.82 072 057 035 020 062 059 079 033 037
2.5 2.51 267 255 249 236 1.22 1.76 159 144 1.27
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to 90%. The performance of IIS in detecting relevant
indicators was found to be perfect when A > 5c. In other
words, higher magnitude of outliers and structural breaks
enhances the effectiveness of IIS and SIS. This may be
attributed to the iterative removal of the least significant
indicators, which substantially lowers the variance of the
estimator and number of irrelevant indicators retained

and raises the retention frequencies of relevant indicators.
Conclusively, the use of different variance parameters and
number of observations in each DGP were found to have
no influence on the effectiveness of the current study’s 11S
and SIS in capturing the true outlier. On the other hand, the
magnitude of outliers and structural breaks clearly affected
the potency of the study’s I1S and SIS.

TABLE 2. Performance evaluation of 1IS+SIS detecting double AO at various significance level in state-space models

Non-sequential Sequential
LLM a (%) 30 5c 70 9c 120 36 5o 70 96 120
Potency (%) 0.1 192 746 947  99.6 100 553 847 987 998 100
1 484 895 998 999 100 74.8 957 997 999 100
2.5 68.5 931 98.6 100 100 793 975 100 100 100
Gauge (%) 0.1 0.05 0.07 0.08 007 0.05 004 002 0.03 002 0.00
1 098 083 087 076 071 087 073 0.70 059 0.56
2.5 1.98 1.84 1.10 052 0.14 1.02 1.12 1.28 .16  1.22
LLT™M a (%) 30 5S¢ 76 9c 120 30 5S¢ 76 9 120
Potency (%) 0.1 228 721 9277 989 999 647 926 97.6  99.8 100
1 49.7 892 98.8 999 100 773 924 997 100 100
2.5 60.1 93,5  99.6 100 100 80.1 95,5 999 100 100
Gauge (%) 0.1 0.08 0.07 0.03 0.03 003 002 007 006 002 0.01
1 0.84 0.69 0.51 049 022 078 061 033 026 0.16
2.5 233 229 218 225 231 .14 129 1.21 1.08  1.02
LLTSM a (%) 36 5S¢ 76 96 120 3o 5S¢ 76 9 120
Potency (%) 0.1 185 416 738  90.1 98.5 679 932 98.0 100 100
1 251 685 899 964 994 486 927 993 100 100
2.5 446 759 920 978 999 854 983 100 100 100
Gauge (%) 0.1 0.07 0.06 0.07 0.05 001 007 009 004 0.00 0.00
1 1.12 1.02 1.09 078 059 0.21 0.11 0.18 037 0.15
2.5 328 374 313 328 3.05 018 028 033 021 083

TABLE 3. Potency and gauge values for single structural breaks at various locations

Location of AO 0.1 0.3 0.5 0.7 09
Potency (%) 97.9 98.9 99.5 98.9 97.9
Gauge (%) 0.01 0.01 0.01 0.01 0.01

TABLE 4. Potency and gauge values for double structural breaks at various locations

Location of double AO  [0.1,0.2]  [0.3,04] [0.5,0.6] [0.7,0.8] [0.9,1]
Potency (%) 99.5 99.05 99.65 9825  97.35
Gauge (%) 03525  0.1780  0.0805  0.1237  0.3576




EMPIRICAL APPLICATIONS

Detection of outliers has essential effects on economic
time series data for parameter estimation and forecasting
purposes. We apply the indicator saturation approach to
the monthly FTSE 100 closing stock price index obtained
from Datastream. The reference model framework for this
application is the local linear trend model with seasonal
component. The data covers the period from October 2013
until October 2023, consisting of 120 observations, T.

This section presents the results of diagnostics tests
following the application the structural time series model
using actual data. Firstly, the FTSE 100 stock price were
analysed based on Akaike information criterion (AIC) and
Bayesian information criterion (BIC) to examine whether
the data fit to the structural time series model. For the
analysis, return values, r,, of the FTSE 100 closed price
data were determined from the log difference of monthly
stock prices. Accordingly, residuals in the structural time
series model are generally assumed to be independent and
normally distributed, with the attribute of homoscedasticity.
Therefore, the current study performed the following
diagnostics tests to examine whether the residuals meet
these respective properties: (1) Durbin-Watson test; (2)
homoscedasticity test; (3) normality test. Overall, the
diagnostic tests results appear satisfactory for every model.
It can be seen that most of the values of autocorrelations at
lag 1 converge to zero indicating weak positive correlation
among residuals. Moreover, the Durbin-Watsons statistics
values are clustered around 2 indicating the same correlation
between residuals. The H-statistics indicate the variances of
two consecutive and equal parts of the residuals are equal.
For instance, in Table 5, the test shows that the variance of
the 52 elements of the residuals is unequal to the variance
of the last 52 elements of the residuals. Summarising,
the assumptions of independence, homoscedasticity and
normality are all satisfied for FTSE 100. When comparing
the info criterion values, this study holds the rule of
thumb: the smaller values denote better fitting models
than larger ones. Overall, the AIC and BIC values are
approximately the same for the local level model.

The selection of significant level is governed by 1 /T
which manifests that generally less than one indicator being
remained spuriously under the null of no outliers. We split
the blocks into six with multi-path indicator saturation.
The objective of this application is to assess how indicator
saturation, specifically IIS+SIS depicts recessionary events
triggered by financial crises around the world, especially
during the COVID-19 pandemic in 2020. As expected, the
results show that structural changes are detected during
the year 2020. Interestingly, we found that the structural
changes detected in 2020 are negatively associated with the
global economic recession that occurred due to COVID-19
pandemic. This result is consistent with previous
occurrences of financial crises, which IIS+SIS interprets as
recessions.
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This study postulates that the structural breaks will
be detected in FTSE 100 during the year 2020 as shown
in Figure 4. Such a result should not come as a surprise
given the major regime changes happened globally over
the period of 2020-2021. Hence, parameter estimation in
GETS modelling can be done by taking into account the
outliers detected by IIS and SIS in the model estimation.
This particular study distinguishes itself from the
research conducted by Bakar (2019) due to the presence
of methodological deficiencies. These deficiencies were
mainly attributed to the Box-Whisker plot’s inability to
effectively handle non-stationary data and adequately
represent the structural change identified in the FTSE 100.
Furthermore, in contrast to the IIS+SIS in GETS modelling,
the Box-Whisker plot approach lacks the capability to
conduct significance testing. Hence, the final selected
model is reported using the Autometrics algorithm. The
procedure of model selection began with the general
unrestricted model, then selecting the significant regressors
which will be retained in the model. The model estimation
was over the period October 2013 until October 2023
where the impulse indicators as {1{j=t}} where {1{j=t}}
corresponds to one when j = ¢ and equal to zero otherwise
forj =1, ..., T. Meanwhile the steps indicators is in the
form {1{j >t}}. This research estimates the simple model
of closed price for FTSE 100 as in Equation (6) including
the IIS+SIS at a target significance level 4 = 1/T‘ This
implies that an expected of false positive the number of
breaks detected of 1 / 120 = 0.0083 outlier. The resulting
model captured two breaks in the log of monthly closed
price for FTSE 100 in the year 2020.

log(y,) = fepr + 0.166; = 70201 — 0.296; » 2020.M3 +
0.096; - 20207 — 0.118; = 202010 + E¢|T (12)
R%..=10.4019, Normality = 1.289,

adj
H(34) = 1.7194, DW = 1.9856
where V¢ is the log of monthly closed price for FTSE 100,
ey and &7 are the smoothed estimates of the trend and
irregular components. Referring to Equation (12), the
coefficients for the structural breaks at ¢ = 2020.M1
and t = 2020.M3 are estimated at g, _,0.0u3 = 0.16
and g, _,o,0m0 = —0.19, respectively. The magnitude of the
structural breaks was quantified based on the estimated
prediction error variance of the model, &, = 0.0019.
The magnitude of structural break is expressed in term
of estimated error variance, & _b s .Hence, the two
structural breaks detected has magnitude of 84.216, and
152.636,. Likewise, the coefficients for the structural
breaks at t = 2020.M7 and t = 2020.M9 are estimated
at B, _ 0007 = 0.09 and B, _ 503040 = —0.11, respectively.
Thus, the breaks have magnitude of 47.364, and
57.896,. Overall, this finding highlights the novel aspect
of this research to identify the magnitude, location, and
sign of the breaks immediately at the start of the sample
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TABLE 5. Diagnostic statistics tests results for FTSE 100 closed price

Statistics LLM
Independence DW 1.766
r(1) 0.1032
Homoscedasticity H(h) H(52) 2.084
Normality N 70.929
Information Criterion AIC 7.4701
BIC 7.5088
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FIGURE 4. Log of monthly closed price of FTSE 100 from October
2013 to October 2023

observation until the end in state-space model framework.
This finding may lead to better understanding of how the
stock markets in the UK reacts to government policy due to
the COVID-19 pandemic. The results also indicate that it is
possible to quantify the impact of a structural change at a
specific date on the stock markets.

CONCLUSIONS

Our study aimed to examine the ability of impulse and
steps indicator saturation in detecting structural breaks in
state-space models. The performance of IIS and SIS was
measured using potency and gauge via extensive Monte
Carlo experiments. Hence, we conclude that IIS+SIS are
very useful in detecting structural breaks. This research
has made a substantial contribution to providing a novel
approach for detecting structural breaks and outliers
simultaneously.

We discovered a few aspects that can affect the
performance of IIS+SIS. First, the size and magnitude of

AO. I1S becomes more effective as the size of AO increases
starting from z = 5. Secondly, the target size chosen also
affects the potency value as it determines the number of
irrelevant indicators to be retained in the model. Next, the
number of blocks is also an important factor in IIS+SIS
performance. Fourth, 11S+SIS performs better in detecting
single AO compared to double AO in terms of potency
above 80%. Finally, the location of AO plays a vital role
in the performance of I1S+SIS. We found that the potency
achieved its maximum of 100% when the location of AO
is in the middle of the sample. In the last part of the work,
we applied 1IS+SIS to the monthly stock returns of FTSE
100 with the aim to investigate the application of IIS+SIS
to depict the global recession movement that affected the
FTSE 100. Overall, IIS+SIS is proven effective in detecting
structural breaks in the state-space model. Even though IIS
is initially designed to detect outliers, it is also capable to
detect single location shift using split-half approach when
a single location shift exists in a series.



Further research might delve into quantitative
comparisons with other models, refining the algorithm’s
parameters to accommodate varying data characteristics,
contributing to its versatility in anomaly detection
scenarios. Finally, trend indicator saturation (TIS) may be
utilized in state spaces models to capture any structural
change that happened.
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