Sains Malaysiana 54(6)(2025): 1629-1639
http://doi.org/10.17576/jsm-2025-5406-17

SMOTE-PCADBSCAN: A Novel Approach for Addressing Class Imbalance in Water

Quality Prediction
(SMOTE-PCADBSCAN: Suatu Pendekatan Baharu untuk Menangani Ketidakseimbangan Kelas dalam Ramalan
Kualiti Air)

NORASHIKIN NASARUDDIN!2* NURULKAMAL MASSERAN!, WAN MOHD RAZI IDRIS?& AHMAD ZIA UL-SAUFIE*

'Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor, Malaysia
’Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM) Kedah Branch, 08400 Merbok,
Kedah, Malaysia
3Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
‘Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor,
Malaysia

Received: 12 August 2024/Accepted: 13 March 2025

ABSTRACT

An accurate and trustworthy prediction model is essential for supporting policy decisions in environmental management
concerning water quality prediction. Nonetheless, imbalanced datasets are prevalent in this discipline and hinder
identifying crucial ecological factors accurately. This study proposed a novel SMOTE-PCADBSCAN model to enhance the
categorisation of water quality data by employing three key components: (i) synthetic minority over-sampling technique
(SMOTE), (ii) principal component analysis (PCA), and (iii) density-based spatial clustering of applications with noise
(DBSCAN). The minority class was initially augmented using SMOTE, which PCA then decreased the dimensionality.
Subsequently, DBSCAN was utilised to generate superior-quality synthetic data by detecting and eliminating extraneous
data points. A Malaysia-based multi-class water quality dataset was employed to determine the efficiency of this model.
Four different versions of the dataset (Original, SMOTE, SMOTE-DBSCAN, and SMOTE-PCADBSCAN) also utilised five
classifier types for the analysis process: (i) decision tree, (ii) random forest, (iii) gradient boosting method, (iv) adaptive
boosting, and (v) extreme gradient boosting. Although the original datasets exhibited great accuracy, class imbalance
occurred when detecting minority classes. Among the datasets, the metric performances of SMOTE-DBSCAN and
SMOTE-PCADBSCAN-based synthetic datasets were superior. The highest accuracy and optimal F1 scores were also
demonstrated by RF using the SMOTE-PCADBSCAN approach, which presented excellent water quality classification and
imbalanced data management. Consequently, the classification accuracy of imbalanced environmental datasets could be
enhanced by employing advanced oversampling techniques and ensemble approaches.
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ABSTRAK

Model ramalan yang tepat dan boleh dipercayai adalah penting untuk menyokong keputusan dasar dalam pengurusan
alam sekitar berkaitan ramalan kualiti air. Walau bagaimanapun, set data yang tidak seimbang sering berlaku dalam
disiplin ini dan menghalang pengenalan faktor ekologi yang penting dengan tepat. Penyelidikan ini mencadangkan model
SMOTE-PCADBSCAN yang inovatif untuk meningkatkan pengelasan data kualiti air dengan menggunakan tiga komponen
utama: (i) teknik pengambilan sampel berlebihan minoriti sintetik (SMOTE), (ii) analisis komponen utama (PCA) dan (iii)
pengelompokan ruang berasaskan ketumpatan aplikasi dengan bunyi (DBSCAN). Kelas minoriti pada mulanya ditambah
menggunakan SMOTE, yang kemudiannya mengalami pengurangan dimensi oleh PCA. Seterusnya, DBSCAN digunakan
untuk menghasilkan data sintetik berkualiti tinggi dengan mengesan dan menghapuskan titik data yang tidak relevan/
berlebihan. Set data kualiti air pelbagai kelas dari Malaysia digunakan untuk menentukan keberkesanan model ini. Empat
versi dataset yang berbeza (Asal, SMOTE, SMOTE-DBSCAN dan SMOTE-PCADBSCAN) melibatkan lima jenis pengelas
untuk proses analisis: (i) pokok keputusan, (ii) hutan rawak, (iii) mesin penggalakan kecerunan, (iv) penggalakan adaptif
dan (v) penggalakan kecerunan ekstrem. Walaupun dataset asal menunjukkan ketepatan yang tinggi, ketidakseimbangan
kelas berlaku apabila mengesan kelas minoriti. Antara dataset, prestasi metrik dataset sintetik berasaskan SMOTE-
DBSCAN dan SMOTE-PCADBSCAN adalah lebih baik. Ketepatan tertinggi dan skor F1 optimum juga ditunjukkan oleh
RF menggunakan pendekatan SMOTE-PCADBSCAN yang menunjukkan prestasi cemerlang dalam pengelasan kualiti
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air dan pengurusan data tidak seimbang. Oleh itu, ketepatan pengelasan dataset alam sekitar yang tidak seimbang boleh
dipertingkatkan dengan menggunakan teknik pengambilan sampel berlebihan lanjutan dan pendekatan ansambel.

Kata kunci: Data tidak seimbang; DBSCAN; kualiti air; PCA; SMOTE

INTRODUCTION

Effective environmental management and policy-making
in ecological data analysis rely heavily on accurate water
quality prediction. However, the challenge of imbalanced
datasets often emerges, particularly in detecting polluted
water events, which occur less frequently than acceptable
water quality events. This imbalance significantly impacts
machine learning models, as accurately identifying minority
class occurrences is critical for effective environmental
decision-making. Numerous studies have highlighted
the challenges posed by imbalanced datasets in water
quality prediction and emphasized the need for innovative
approaches to enhance classification performance.

In Malaysia, water quality is commonly assessed
using the Water Quality Index (WQI), a metric that
integrates six essential variables: dissolved oxygen (DO),
biochemical oxygen demand (BOD), chemical oxygen
demand (COD), ammonia-nitrogen (NH3-N), suspended
solids (SS), and pH. These variables are converted into
sub-indices (SI) using formulas provided by the Department
of the Environment (DOE) and combined through a
weighted summation technique to compute the WQI
(DOE 2022). The resultant WQI categorizes water quality
into three classes: clean (C), slightly polluted (SP), and
polluted (P), providing a standardized framework for
assessing water bodies.

The importance of effective water quality management
in Malaysian rivers has been extensively studied. Fitri et
al. (2020) analyzed the freshwater quality of the Sungai
Kelantan, proposing measures to mitigate pollution
levels. Ahmed et al. (2020) assessed heavy metal levels
in the Sungai Langat and its water supply chain, offering
insights into drinking water safety. Yasin and Karim (2020)
introduced a fuzzy weighted multivariate regression
analysis to design a novel WQI model aligned with DOE
requirements. Studies by Ahmed et al. (2022) and Hashem,
Ahmad and Yusuf (2021) focused on pollution sources
and river basin management for the Sungai Petani and
Sungai Langat, respectively. These findings collectively
underscore the need for advanced tools to manage water
quality more effectively.

Recent advancements in oversampling techniques
have introduced sophisticated methods to address class
imbalance in water quality datasets. Hybrid approaches,
such as the integration of SMOTE with Tomek Links or
Edited Nearest Neighbors, not only balance datasets
but also effectively mitigate noise (Dogo et al. 2021).
Generative adversarial networks (GANs) have further
enhanced oversampling by generating synthetic
minority samples in a data-driven manner, improving
the overall performance of classification models

(Poudevigne-Durance 2024). Wong et al. (2023)
introduced a stacked ensemble deep learning model for
predicting water quality indices (WQI) from imbalanced
datasets, achieving notable improvements in accuracy and
robustness. Additionally, Shehab et al. (2023) developed
a water quality classification model leveraging raw flush
sets, demonstrating the utility of advanced techniques
in managing class imbalance. These studies highlight
the potential of integrating advanced oversampling
methods with predictive models to support environmental
decision-making and promote sustainable management
practices. As water quality monitoring becomes
increasingly critical for environmental health, the adoption
of these advanced techniques can enhance the reliability
of datasets, providing valuable insights for policy
development and resource management. However, despite
their promise, these methods often entail significant
computational demands, are susceptible to overfitting, and
involve complex parameter optimization, underscoring the
need for further refinement and accessibility.

Despite these advancements, SMOTE remains widely
used due to its simplicity, interpretability, and adaptability
across various domains, including water quality. As
Taloor et al. (2025) demonstrated, SMOTE significantly
improves the performance of machine learning models
in environmental studies. However, SMOTE has notable
limitations, such as sensitivity to noise and its inability to
account for data structure. To overcome these limitations,
hybrid methods like RN-SMOTE, which incorporate noise
reduction techniques, have been proposed to enhance
classification performance (Arafa et al. 2022). This study
builds on SMOTE’s foundation while addressing its
limitations by introducing dimensionality reduction and
clustering.

This paper proposes a novel SMOTE-PCADBSCAN
model that integrates three components: (i) synthetic
minority over-sampling technique (SMOTE) for class
balancing, (ii) principal component analysis (PCA)
for dimensionality reduction, and (iii) density-based
spatial clustering of applications with noise (DBSCAN)
for noise identification and removal. By enhancing the
quality of synthetic data and reducing class disparities,
SMOTE-PCADBSCAN model aims to improve the
accuracy and reliability of predictive models in water
quality classification.

The subsequent sections of this paper are organized
as follows: the Materials and Methods section describes
the SMOTE-PCADBSCAN model and study methodology;
Results and Discussion presents the comparative
performance of classifiers and datasets; and Conclusion
summarizes key findings and outlines potential future
research directions.



MATERIALS AND METHODS

STUDY AND DESIGN

This study assessed the oversampling impact of the
SMOTE-PCADBSCAN model on a multi-class water
quality dataset obtained from the Malaysian DOE. The
dataset encompassed diverse water quality variables,
and the DOE station was tasked with overseeing the
quality of all Malaysian water resources. Approximately
5511 recordings between 2018 and 2020 were obtained
regarding the Malaysian rivers. The primary dependent
variable in this study was WQC. This variable classified
the water quality into three classes: (i) C, (ii) SP, and (iii) P.
The WQI was also employed to conduct this categorisation,
which was further subdivided into various categories
based on the ranges of sub-indices established by the
DOE. Approximately 14 parameters were finalised as the
independent variables in this study to define the WQC
based on previous studies. Table 1 tabulates the statistical
characteristics of the dataset used in this study.

Approximately 19% (1047/5511),26.5% (1460/5511),
and 54.5% (3004/5511) instances were reported in the
dataset corresponding to C, SP, and P classes, respectively.
Even though this observation implied a minor class
imbalance, clean and dirty water should be accurately
anticipated owing to the smaller sample sizes in these
categories. Hence, the DOE necessitates efficient water
management enforcement and conservation policies
through a transparent and discerning process of cleaning
and contaminating water.
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SMOTE-PCADBSCAN

Considering that Chawla et al. (2002) established the highly
effective SMOTE, this study employed the algorithm for
the SMOTE-PCADBSCAN model by linearly interpolating
between a randomly chosen minority sample and one of
its neighbouring samples to produce synthetic datasets
(Douzas, Bacao & Last 2018). A random minority sample
(x;) is initially chosen. Another sample (X;) is then selected
from the k& nearest neighbours belonging to the minority
class as follows:

Xpow zxi+(xj—xi)xé‘ (1)

where § represents a random number from 0 to 1. SMOTE
is also more advantageous for oversampling because it can
prevent overfitting than other algorithms. For example,
random oversampling (ROS) duplicates samples from the
minority class. In contrast, the SMOTE builds synthetic
instances (Jeatrakul, Wong & Fung 2010). This technique
pertains to the noise in the initial dataset and the production
of novel samples, resulting in additional dissemination
and noise amplification. The disruptive samples (outliers)
hinder the improvement of various classifiers when the
datasets are oversampled using SMOTE (Cheng et al.
2019). Hence, noise elimination methods are required
while implementing SMOTE. This process enhances
the efficiency of the classifiers employed for dataset
classification by mitigating the SMOTE-related noise or
the noise inherent in the original datasets.

TABLE 1. Summary of the statistical characteristics of the dataset used in this study

No Variable Role Description Unit Type
1 WQC Target WQC 1=C;2=SP;3=P Categorical
2 Temp Input Temperature °C Numerical
3 COND Input Electrical Conductivity uS Numerical
4 SAL Input Salinity ppt Numerical
5 TURNTU Input Turbidity NTU Numerical
6 NO, Input Nitrate mg/L Numerical
7 PO, Input Phosphate mg/L Numerical
8 As Input Arsenic mg/L Numerical
9 Hg Input Mercury mg/L Numerical
10 Cd Input Cadmium mg/L Numerical
11 Cr Input Chromium mg/L Numerical
12 Pb Input Plumbum mg/L Numerical
13 Zn Input Zinc mg/L Numerical
14 oG Input Oil & Grease mg/L Numerical
15 E. coli Input Escherichia coli cfu/100 mL Numerical
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Arafa et al. (2022) developed the RN-SMOTE as
a pre-processing technique for unbalanced binary data.
This method initially applied the SMOTE technique to
oversample the training data, which generated noisy
synthetic instances in the minority class. The DBSCAN
was then utilised to identify and eliminate noise, suggesting
that the RN-SMOTE effectively boosts model performance.
Ester et al. (1996) created the DBSCAN, which was a
clustering method independent of specific parameters
(Tran, Drab & Daszykowski2013). This approach generally
clusters data by calculating the density of points within a
distance from each point in the dataset. The algorithm can
also locate and remove extraneous data, such as random
data, to enhance data accuracy (Kumar & Reddy 2016).
Moreover, the DBSCAN approach categorises each point
in the dataset into three types: (i) core, (ii) border points,
and (iii) noise points (outliers) (Dalakleidi et al. 2017). A
point is designated as a core point, and a new cluster is
formed if the number of points within a neighbourhood
distance £ exceeds the minimum criterion. Alternatively,
this point is classified as noise if it does not meet the
requirements. The cluster is then expanded by including
more locations within the £-neighbourhood in subsequent
iterations. Lastly, this process iterates until no additional
points can be included, indicating the conclusion of the
current clustering process (Ester et al. 1996). The following
explanations present a concise summary of the DBSCAN
algorithm for the given dataset D = {p;|p; E R, 1 =i = n}
(Ester et al. 1996; Sander et al. 1998):

(1) £-neighborhood of a point: This term encompasses
all points within a given distance € from p; and
forming the neighbourhood N (p;) as follows:

N.(p;) = {p; € DIdist(p,p;) = e.p: #p;}  (2)

(2) Directly density reachable: This term represents
clusters of core points surrounded by border points.
The border points are also part of the cluster, which are
inside the £-neighbourhood of a core point. A certain
number of points (MinPts) in its €-neighbourhood is
necessary for a point to be classified as a core point
as follows:

IN.(p;)| = MinPts, then p; is a corepomnt  (3)

(3) Density reachable: Considering & and MinPts,
a point is considered directly density reachable
if a sequence of points {p;|1 =i =n} is present,
where p,, is directly density reachable from p;.
This outcome is attributed to each subsequent point
p; + 1 that is directly density reachable from p;.

(4) Density connected: Given £ and MinPts, points p;
and p ; are called densely connected if a point p, exist
such that both p; and p; are densely reachable from
Po.

(5) Cluster: Considering £ and MinPts, if a point p;
is part of a cluster C, then the point p; also belongs
to C if it is reachable from P; with high density. If
two points p; and P;j are part of the same cluster C, it
implies that they exhibit a high level of connectivity.

(6) Noise: Given & and MinPts, the noise refers
to the points in the dataset C containing cluster
{C;]1 = i < k} that are not assigned to any cluster as
follows:

noise = {p € D|Vi:p & C;} 4

The DBSCAN algorithm necessitates the incorporation
of two parameters (€ and MinPts). In contrast, the sorted
k-distance graph was first proposed as a pioneering and
extensively employed method for estimating the parameters
of the DBSCAN algorithm (Starczewski, Goetzen & Er
2020). This graphical method involves identifying the
k-nearest neighbour (KNN) for each point and arranging
them in ascending order depending on their distances. The
location of the highest degree of curvature on the resulting
curve is then identified to determine the value of £. This
study also utilised the silhouette index to ascertain the
appropriate MinPts value, as it was a widely employed
metric for assessing clustering outcomes (Blahova,
Horecny & Kostolny 2023). Conversely, a difficulty
occurred when using data mining clustering approaches to
datasets containing many characteristics (Kanungo et al.
2002).

Previous studies identified the PCA as the most efficient
method for reducing data in these situations (Mustakim et
al. 2021; Shen et al. 2021; Rahman et al. 2020). Although
the dataset used in this study is not highly dimensional,
PCA was incorporated into the SMOTE-PCADBSCAN
methodology for two primary reasons: (i) to simplify the
data structure and optimize the clustering process within
DBSCAN by reducing potential redundancies in the feature
space, and (ii) to retain the most relevant variance in the
data, thereby improving the identification of clusters and
mitigating noise in synthetic data. This study subsequently
suggested the integration of SMOTE, PCA, and DBSCAN
components in the proposed SMOTE-PCADBSCAN model
to provide training datasets of superior quality. Initially, the
PCA was proposed by Pearson in 1901 and subsequently
advanced separately by Hotelling in 1933 and Jolliffe in
1986 (Marsboom et al. 2018). The primary goal of this
analysis was to decrease the number of variables while
preserving the crucial information (Kavitha & Caroline
2015). Generally, the PCA consists of five stages as
follows (Marsboom et al. 2018): 1) Normalising the data
by removing the mean from each data value, 2) Calculating
the covariance matrix, 3) Determining the eigenvalues and
eigenvectors, 4) Selecting components and feature vectors,
and 5) Constructing a new dataset.

Figure 1 depicts the process flow of the proposed
SMOTE-PCADBSCAN model for this study. The process



begins with the water quality dataset undergoing data
preprocessing, where missing values are handled, and
variables are standardized to ensure consistency. Next,
the dataset is split into training (70%) and testing (30%)
groups. SMOTE is applied exclusively to the training data
to generate synthetic data for minority classes, addressing
class imbalance. Following this, PCA is used to reduce
the dimensionality of the synthetic data, simplifying the
data structure and retaining the most significant features.
The reduced-dimension synthetic data is then processed
through DBSCAN, which clusters the data and identifies
noisy samples. Noise is removed at this stage, resulting
in a cleaned synthetic dataset. The cleaned synthetic
data is combined with the original training data to form
a comprehensive training set. This final training dataset is
used to train machine learning classifiers, while the testing
dataset is reserved for model evaluation.

In this study, the machine learning algorithms utilized
include decision tree (DT) and ensemble methods such as
random forest (RF), gradient boosting machine (GBM),
AdaBoost, and XGBoost, all integral to the proposed
SMOTE-PCADBSCAN  model. Ensemble learning
combines multiple base models to enhance predictive
accuracy and robustness (Dong et al. 2020). DT algorithms,
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used for classification and regression, construct decision
trees where nodes test attributes and branches represent
outcomes, effectively modeling complex decision processes
(Abedinia & Seydi 2024). RF, introduced by Breiman
(2001), employs multiple decision trees and majority
voting to improve predictive performance (Algahtani et
al. 2022). GBM iteratively adds small decision trees to
minimize residual errors, boosting overall model accuracy
(Sarker 2021). AdaBoost adjusts sample weights to focus
on misclassified instances, combining weak learners into
a strong classifier (Schapire 1999). XGBoost, a modern
gradient boosting method, optimizes performance with
enhanced software and hardware implementations (Chen
& Guestrin 2016). Classifier performance was evaluated
using six metrics: accuracy, sensitivity, specificity,
precision, F1 score, and average F1 score.

RESULTS AND DISCUSSION

This section presents the results of applying different
classifiers to a multi-class water quality dataset
under four scenarios: the original dataset, SMOTE
oversampled dataset, SMOTE-DBSCAN dataset, and
SMOTE-PCADBSCAN dataset. The classifiers were
evaluated using accuracy, sensitivity, specificity,

| WATER QUALITY DATASET

DATA PREPRO(

¥

DATASPLITTING

3

ORIGINAL DATA

T

TRAINING 70%

CLEANED SYNTHETIC DATA

FIGURE 1. The flowchart of the proposed
SMOTE-PCADBSCAN model in this study
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precision, F1 score, and average F1 score to assess the
performance improvements provided by the proposed
SMOTE-PCADBSCAN model.

DATA PRE-PROCESSING

In this phase, various measures were taken to replace
missing data and to standardise the data in order to achieve
optimal classification results. Figure 2 depicts that missing
values were observed for five variables: E. coli, PO4,
WQC, TURNTU, and NO3, with the rate of missing values
ranging from 0.0002% to 5.2%. These were imputed using
the KNN method with k=5. Min-max normalisation was
then performed to standardise the data set and ensure
uniform scaling. Figure 3 displays the correlation matrix
of the 14 input variables utilised in this investigation. The
matrix showed strong correlations between COND and
SAL, TURNTU and NO3, TURNTU and Zn, and NO3
and Zn with correlation coefficients of 1.0, 0.99, 0.99, and
1.0, respectively. Meanwhile, SAL, NO3, and Zn were
excluded from the dataset to prevent repetition. The revised
dataset consisted of 11 input variables for water quality
classification, which were then divided into two categories:
Training (70%) and Test (30%).

CLASS IMBALANCE

The dataset showed an imbalance in water quality classes,
potentially affecting the training process. To address this,
four dataset variations were generated: Original, SMOTE,
SMOTE-DBSCAN, and SMOTE-PCADBSCAN. The
dataset consisted of 5511 samples, with 3861 (70%) used
for training and 1650 (30%) for testing. Table 2 summarizes
the original dataset distribution, with 739, 2104, and 1018
samples in classes C, SP, and P, respectively.

SMOTE was applied to mitigate the imbalance,
increasing the samples for classes C and P to 2217
and 2036, respectively. Further refinement using
SMOTE-DBSCAN adjusted these counts to 2151 (C) and
2026 (P). The proposed SMOTE-PCADBSCAN model
produced slightly more balanced distributions, with
2195 (C) and 2025 (P) samples, improving class
equalization and enhancing model performance. The final
test dataset retained 308, 900, and 442 samples for classes
C, SP, and P, respectively.

CLASSIFICATION

The classification phase aimed to evaluate the
effectiveness of five algorithms—DT, RF, GBM,
AdaBoost, and XGBoost—in determining water quality
status across various dataset scenarios: Original, SMOTE,
SMOTE-DBSCAN, and SMOTE-PCADBSCAN.
Performance metrics included accuracy, sensitivity,
specificity, precision, F1 score and average F1 score
(Table 3).

The DT algorithm achieved an accuracy of 63.21%
and an average F1 score of 74.61% on the original dataset.
However, its sensitivity for classes C (49.03%) and
P (23.98%) was notably low, despite high specificity values
for both classes. When applied to oversampled datasets,
the accuracy declined to 52.79%, but sensitivity for class
P improved significantly to 91.63%, while sensitivity
for SP decreased to 31.33%. This outcome highlights a
trade-off between accuracy and sensitivity, underscoring
the limitations of DT in effectively handling imbalanced
data.

RF demonstrated superior performance, with the
highest accuracy of 73.45% on the original dataset.
Oversampling improved sensitivity and specificity
for minority classes, with SMOTE-DBSCAN and
SMOTE-PCADBSCAN  yielding  higher  average
F1 scores (84.07% and 84.14%, respectively). The
SMOTE-PCADBSCAN  model achieved the best
balance across metrics, improving sensitivity for classes
C (75.65%) and P (64.48%).

GBM achieved a maximum accuracy of 72.24%
and high precision for class C (81.50%) on the original
dataset. However, it exhibited lower sensitivity for classes
P (54.98%) and SP (60.80%), indicating challenges
in handling class imbalance. When SMOTE and
SMOTE-DBSCAN were applied, average F1 scores
improved to 83.42% and 83.57%, respectively, although
accuracy slightly decreased to 71.21% and 71.45%. These
oversampling techniques enhanced sensitivity for class
P (67.87%) and specificity for SP (72% and 72.40%).
The SMOTE-PCADBSCAN model produced the lowest
accuracy (70.73%) but achieved balanced performance
with an average F1 score of 83.08%, showing improved
sensitivity and specificity for classes C and SP. While the
original dataset yielded the highest accuracy for GBM, the
SMOTE-DBSCAN dataset demonstrated a more equitable
performance across all metrics, addressing class imbalance
more effectively.

AdaBoost achieved the highest accuracy (68.91%)
and precision (84.34%) for class C on the original dataset.
However, it struggled with class imbalance, showing
poor sensitivity for class P (40.05%) and moderate
specificity for SP (46.13%). Accuracy slightly decreased
with SMOTE (66.55%) and SMOTE-DBSCAN (66.79%),
but both datasets demonstrated higher average F1 scores
(81.29% and 81.27%, respectively), indicating better
handling of class imbalance. These oversampling
methods improved sensitivity for P (68.30% and 66.52%)
and specificity for SP (73.60% and 71.73%). The
SMOTE-PCADBSCAN model offered the best balance,
achieving an accuracy of 67.58% and the highest average
F1 score (81.77%). It also enhanced sensitivity for
P (69.23%) and maintained balanced specificity across all
classes. While AdaBoost delivered the highest accuracy
on the original dataset, the SMOTE-PCADBSCAN model
provided a more equitable and robust performance,
effectively addressing class imbalance.
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TABLE 2. Summary of the training and testing dataset samples

Dataset Scenarios C SP P
Training Original 739 2104 1018
SMOTE 2217 2104 2036
SMOTE-DBSCAN 2151 2104 2026
SMOTE-PCADBSCAN 2195 2104 2025

Testing Original 308 900 442
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XGBoost achieved the highest accuracy (71.76%)
on the original dataset but showed lower sensitivity for
classes C (65.58%) and P (53.62%). Notably, it exhibited
exceptional specificity for class C (96.65%). Applying
SMOTE resulted in a slight decrease in accuracy (70.61%)
but improved the average F1 score (82.72%), along with
increased sensitivity for C (72.08%) and P (63.12%).
The highest average F1 score (83.12%) was obtained
with the SMOTE-DBSCAN dataset, which offered the
most balanced performance, improving sensitivity
(C: 74.03%, SP: 74.33%), precision (C: 76%, SP:
73.84%), and specificity (C: 94.63%, P: 86.26%). The
SMOTE-PCADBSCAN model demonstrated comparable
accuracy (70.61%) and a slightly lower average F1 score
(82.79%) but maintained balanced metrics across all
classes.

While the performance of SMOTE-PCADBSCAN did
not significantly improve metrics for models like XGBoost
and GBM, it notably enhanced the performance of the RF
model. Specifically, SMOTE-PCADBSCAN increased the
average F1 score for RF to 84.14%, the highest among all
combinations, and improved sensitivity and specificity for
minority classes (C and P). This highlights the importance
of selecting the appropriate model-oversampling
combination, as SMOTE-PCADBSCAN is particularly
effective with RF for addressing class imbalance.

Overall, while the original dataset achieved the
highest accuracy, the synthetic datasets, particularly
SMOTE-DBSCAN and SMOTE-PCADBSCAN, provided
more robust and balanced performance. These findings
highlight their effectiveness in addressing class imbalance
and improving classification results.

PERFORMANCE EVALUATION

Accurately identifying C and P classes is essential in water
quality classification to treat polluted rivers promptly.
Given that this classification system consisted of three
classes (C, SP, and P), noteworthy outcomes were reported
when various algorithms (DT, RF, GBM, AdaBoost, and
XGBoost) evaluated different training datasets (Original,
SMOTE, SMOTE-DBSCAN, and SMOTE-PCADBSCAN).
Out of these options, the most effective strategy for
increasing classification performance was to combine the
RF algorithm with the proposed SMOTE-PCADBSCAN
model in this study. Meanwhile, the DT algorithm
demonstrated simplicity and interpretability. Nevertheless,
the proper management of intricate water quality when
accounting for various sampling methodologies using DT
must be further assessed. Even though a good accuracy of
63.21% with the original dataset was produced with the
original dataset using DT in this study, its performance
decreased dramatically to 52.79% when applied to the
SMOTE, SMOTE-DBSCAN, and SMOTE-PCADBSCAN
datasets. This outcome was attributed to the insufficient
consideration of imbalanced data distribution by DT,
leading to lower identification performance of C and P.
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This study demonstrated that RF was the optimal
algorithm compared to other models across all datasets.
The finding was concluded due to its capability to
achieve the maximum accuracy of 73.45% on the
original dataset. When SMOTE, SMOTE-DBSCAN, and
SMOTE-PCADBSCAN were applied, higher system
performances were also observed. These observations
were due to the PCA and DBSCAN components boosting
the capability of RF to handle imbalanced data efficiently.
Consequently, the resilience and reliability of RF in
recognising C and P were showcased through the maximum
accuracy and average F1 score levels. The equitable
precision and recall variables denoted the effectiveness
of RF with the proposed SMOTE-PCADBSCAN model in
this study. Exceptional specificity and sensitivity values
in C and P were reported using this model, promoting
dependable water quality monitoring and prompt
intervention in contaminated rivers. Thus, a thorough
and detailed comprehension of the data was verified
owing to three factors: (i) RF algorithm, (ii) ensemble
approach incorporating the decisions of several trees, and
(iii) SMOTE-PCADBSCAN. These factors contributed to
the most optimal classification accuracy and ensured the
precise identification of crucial water quality categories.
Eventually, efficient environmental management and
pollution control could be realised using the proposed
study model.

CONCLUSIONS

This study successfully classified water quality using
a labelled, multi-class dataset with the help of various
machine learning classifiers. Three methods - SMOTE,
SMOTE-DBSCAN, and SMOTE-PCADBSCAN - were
employed to address class imbalance in the dataset. A
systematic performance comparison of five classifiers
(DT, RF, GBM, AdaBoost, and XGBoost) was conducted
across four dataset versions, demonstrating improvements
in classification accuracy. Missing values were addressed
through KNN imputation, while strongly correlated
variables were removed during the pre-processing stage to
eliminate redundancy and improve the dataset’s reliability.
The oversampling techniques, particularly SMOTE-based
methods, proved beneficial for minority classes, leading to
more accurate water quality assessments.

Although the original dataset often achieved the
highest accuracy, its inability to handle class imbalance
effectively for minority classes was evident. The
synthetic datasets generated using SMOTE-DBSCAN and
SMOTE-PCADBSCAN demonstrated a more balanced and
robust performance across key metrics, including accuracy
and F1 score. Notably, the RF model paired with the
proposed SMOTE-PCADBSCAN approach significantly
improved performance, making it an effective tool for
addressing class imbalance in environmental datasets. The
RF-SMOTE-PCADBSCAN combination was found to be
a reliable method for promptly and accurately identifying
clean and polluted rivers, contributing to improved
environmental management and public health outcomes.
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While this study demonstrated the effectiveness of
the proposed SMOTE-PCADBSCAN method, several
limitations should be acknowledged. First, the study
focused on improving the SMOTE algorithm and did
not incorporate recent data imbalance techniques for
comparison due to time constraints. This limits the breadth
of the analysis and the generalizability of the findings
to other advanced oversampling methods. Second, the
evaluation was conducted on a single dataset, which may
not fully represent the diversity of environmental data.
Future studies should validate the model using datasets
from different geographical regions or with varying class
distributions. Lastly, while the SMOTE-PCADBSCAN
model demonstrated enhanced performance for RF, the
improvements for other classifiers were less pronounced,
suggesting the need for further refinement and exploration
of hybrid methods to enhance compatibility with other
machine learning algorithms.

In summary, integrating data pre-processing and
advanced oversampling techniques with powerful machine
learning algorithms can address the challenges posed by
imbalanced datasets. The RF-SMOTE-PCADBSCAN
model developed in this study proved effective for water
quality classification and shows potential for broader
applications in environmental studies. Further research
should focus on testing these methods on larger, more
diverse datasets and refining oversampling techniques to
extend their applicability in environmental data science.
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