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ABSTRACT

Integro-differential equations are critical for modelling real-world phenomena in physics, engineering, and biology. This
paper introduces a Quadratic Mean iterative method to solve dense linear systems derived from the discretization of second-
and fourth-order Fredholm integro-differential equations (FIDEs). The solution of the FIDEs is approximated using finite
difference, composite trapezoidal, and composite Simpson’s 1/3 and 3/8 schemes. The quadratic mean iterative method
then solves the discretized system with different mesh sizes. As the resulting systems are large, a complexity reduction
approach is implemented on the quadratic mean method to develop the half-sweep quadratic mean iterative method. The
newly proposed iterative method includes a novel theorem, comprehensive proofs, and a detailed convergence analysis.
The numerical results indicate that the quadratic mean method significantly outperforms the Gauss-Seidel iterative method
in terms of efficiency, making it a promising solution for FIDEs.

Keywords: Fredholm integro-differential equations; quadratic mean; half-sweep iteration; finite difference; composite
trapezoidal; Composite Simpson’s rules

ABSTRAK

Persamaan pembezaan-kamiran adalah penting untuk memodelkan fenomena dunia sebenar dalam fizik, kejuruteraan dan
biologi. Dalam jurnal ini memperkenalkan kaedah lelaran Purata Kuadratik untuk menyelesaikan sistem linear tumpat yang
diperoleh daripada membahagikan persamaan integro-pembezaan Fredholm tertib kedua dan keempat (FIDEs) kepada
bahagian kecil. Penyelesaian FIDEs dianggarkan menggunakan perbezaan terhingga, trapezoid komposit dan skema 1/3 dan
3/8 komposit Simpson. Kemudian, kaedah lelaran purata kuadratik digunakan untuk menyelesaikan persamaan anggaran
dengan saiz mesh yang berbeza. Memandangkan sistem yang akan diselesaikan adalah besar, pendekatan pengurangan
kerumitan dilaksanakan pada kaedah purata kuadratik untuk membentuk kaedah lelaran purata kuadratik separuh sapuan.
Kaedah lelaran yang baharu dicadangkan termasuk teorem novel, bukti komprehensif, dan analisis penumpuan terperinci.
Keputusan berangka menunjukkan bahawa kaedah purata kuadratik dengan ketara mengatasi kaedah lelaran Gauss-Seidel
dari segi kecekapan, menjadikannya penyelesaian terbaik untuk FIDEs.

Kata kunci: Persamaan pembezaan-kamiran; Fredholm; min kuadratik; lelaran separuh sapuan; beza terhingga; trapezoid
komposit; Peraturan Simpson

INTRODUCTION context, we focus on the general form of second and

In the 21* century, mathematical models have emerged
as indispensable tools for problem-solving across diverse
fields. Among these, integro-differential equations (IDEs)
play a pivotal role in formulating physical phenomena
in various domains, including nano-hydrodynamics,
potential theory, mechanics, fluid dynamics, glass-forming
processes, biology, astronomy, and chemical kinetics
(Benzi & Dayar 1995; Rathinasamy & Balachandran 2008;
Salih et al. 2014; Yuhe et al. 1999). However, solving these
equations analytically, especially for high-order cases
(Zhao & Corless 20006), poses significant challenges due to
their complexity and time-consuming nature (Aruchunan
et al. 2015). As a result, obtaining an approximate solution
through numerical methods becomes necessary. In this

fourth order linear Fredholm integro-differential Equations
(FIDEs) for investigation and resolution. In practical
applications, the behaviors modelled by first, second and
fourth-order IDEs often suffice to capture the essential
dynamics of the system under study. Extending the analysis
to higher-order equations was deemed unnecessary as
no additional significant insights were anticipated. Many
practical applications in physics, engineering, and other
fields can be effectively modelled using first, second
and fourth-order equations. For example, Newton’s laws
(which lead to second-order equations) are foundational in
mechanics. Higher-order equations are often only necessary
in more specialized contexts. The general equations of
second and fourth order FIDEs are as follows,
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2" order FIDEs:
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with Dirichlet boundary conditions:

G(m)=aq, Gp)=b

4% order FIDEs:
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dxt

with the Dirichlet boundary conditions

G"=a, G(p)=b,
G™=a, G'(p)=b,

where S(x), T(x), U(x), fix) and the kernel K(x,f) are
the function that is already known while the G(x) is the
unknown function to be determined.

This paper focuses on the two-stage iterative methods
with some variation. This method is widely used in
solving matrix problems such as SOR (Cai, Xiao & Zhao-
Hong 2010; Katuri & Maroju 2025), Iterative Alternating
Decomposition  Explicit (IADE) method (Sahimi,
Ahmad & Bakar 1993), two-stage Initial-value Iterative
Neural Network (IINN) method (Jin et al. 2024), Mixed-
Precision Conjugate Gradient algorithm (Aihara, Ozaki
& Mukunoki 2024) and Weighted Mean (WM) methods.
The family of WM iterative methods are one of the best
numerical algorithms to solve system of equations which
converge quickly and smoothly. Under the WM methods
family, there are several methods which has developed
namely Arithmetic Mean (AM) (Galligani & Ruggiero

1990) and Geometric Mean (GM) (Sulaiman et al. 2006)
iterative methods. In this paper, a newly proposed method,
called the quadratic mean method is developed and
implemented to solve the dense linear systems arising
from the Finite Difference, Composite Trapezoidal,
Composite Simpson’s 1/3, and Composite Simpson’s 3/8
schemes. The discretization schemes typically generate
dense systems, which are often computationally intensive
(Aruchunan et al. 2022). To mitigate this complexity,
a reduction technique is applied to the quadratic mean
method, leading to the development of the half-sweep
quadratic mean method. To assess the effectiveness of the
proposed methods, three key parameters are considered:
the number of iterations, execution time, and maximum
absolute error. The primary contribution of this paper is the
introduction of the quadratic mean iterative method and its
variants for solving FIDEs, supported by the development
and proof of a corresponding theorem. Table 1 presents
the abbreviations for the numerical schemes and methods
utilized in this study.

MATERIALS AND METHODS

COMPUTATIONAL COMPLEXITY-REDUCTION
TECHNIQUES

The proposed quadratic mean (QM) method, which can also
be referred to as the Full-Sweep Quadratic Mean (FSQM),
along with the discretization schemes, is optimized to
reduce computational complexity. The core concept behind
the application of half-sweep techniques is to minimize this
complexity. Initially, the solution domain of the half-sweep
is divided into N equally spaced intervals, as illustrated
in the figures below. This approach helps restructure the
computation process, enhancing efficiency.

where the blue circles and red triangles refer to the nodal
points and /% is the step size.

TABLE 1. Descriptions of Abbreviated Numerical Codes

Discretization Schemes

FDCT Finite Difference-Composite Trapezoidal
FDCSI1 Finite Difference-Composite Simpson's 1/3
FDCS2 Finite Difference-Composite Simpson's 3/8
Iterative Methods
FSGS Full-Sweep Gauss-Seidel
HSGS Half-Sweep Gauss-Seidel
FSAM Full-Sweep Arithmetic Mean
HSAM Half-Sweep Arithmetic Mean
FSQM Full-Sweep Quadratic Mean
HSQM Half-Sweep Quadratic Mean
Performance Metrics:
N Number of iterations
t Execution time (seconds)

EN Maximum absolute error
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FIGURE 1. Node distribution for half-sweep iteration

Based on Figure 1, the half-sweep iterative method,
only the @ nodal point is considered for the process of
converging. The A\ remaining points are calculated
by using the average mean method. The half-sweep
techniques reduce the complexity of the iterative method
to % . The GS and AM iterative methods are also refined
using this iteration concept. Consequently, the proposed
FSQM method will be further explored by incorporating
half-sweep iteration techniques to assess its performance,
focusing on the number of iterations, execution time, and
maximum absolute error.

FINITE DIFFERENCE-COMPOSITE CLOSED NEWTON-
COTES SYSTEMS

In this paper, all the iterative methods mentioned are GS
(Connolly, Burns & Weiss 1990) or also known as Full-
sweep Gauss-Seidel (FSGS) (Aruchunan et al. 2022),
Half-sweep Gauss-Seidel (HSGS) (Aruchunan & Sulaman
2012), Full-sweep Arithmetic Mean (FSAM) (Galligani &
Ruggiero 1990), Half-sweep Arithmetic Mean (HSAM)
(Muthuvalu & Sulaiman 2011). All the combinations of
discretization schemes will be presented namely finite
difference with composite Trapezoidal (FDCT), finite
difference with composite Simpson’s first rule (FDCS1)
and finite difference with composite Simpson’s second
rule (FDCS2) schemes to form a linear system (Aruchunan
& Sulaiman 2012). Now let an interval (m, p) be divided
uniformly into n subintervals with size of ¥ = ? and the
discrete set of points of x be given by x, =m + iy (i =0,1,2,
..., N).Throughout the following sections, the value of u
corresponds to 1 and 2 represents the full- and half-sweep
iteration concept (Aruchunan et al. 2014). The FDCT,
FDCSI1 and FDCS2 schemes are applied to discretize
equations (1) and (2) as follows:

Second order FIDEs:

G lxpag)-26 ) +6 (2]

Glxisn) -6 iXy)
5, e + LR U6 0) = £ + Dz 47K,6G (3)

Fourth order FIDEs:
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fori=1,2,3,...,nand Aj in equation (3) and (4) is given by

Composite Trapezoidal: 2 = {ﬂ j=0.n

h, otherwise

E j=0n
j=135..n-1

3
Composite Simpson’s 1/3: 4 = {%~.
e
=
Juh
=
suh
-

otherwise
j=0n
Composite Simpson’s 3/8: 4; = j=360,...n-3

otherwise

Both linear equations can also be rearranged and written in
the matrix form as

YX =V (5)
where
Second order IDE
LEEY {1a g1 Wy -3 Wy n-2 Wy p—1
Q21 K32 {2z Wy -3 Wy -2 Wy -1
Ny, Q3.2 K3a Wy -3 Wy p—2 Wy p-1
Y = 3 H H H H H
W,-31 @Wp3z Wy 33 Kn-3n-3 Sn-3n-2 @n-gn-1
Wy-g1 Wpoz3 @Wy_a3 @n-2n-3 Kp-2n-2 n—2n-1
Wy—11 Wpogz Wy - Wn—in-3 @n-ln-z Mneim-tdnyoog

in which

K, =y U= 28— 9T - ydk, ¢ =SH+yT-vak, 0,= S~
yZAjkl.J. and o, =— P A

Jkij
}’:fi + (SD + ?’:Aukm)go + (‘P’:Anki,n)(;u

?:ff + (T:ADRZ,D)GD + (T:Arzkf,i!)crz
}':fE + (T:ADkE,D)GD + (T:Auka,u)gu

B
Il

Y faat (T:Aukn—a,o)go + (T:Aukn—a,n)(;u
Y:ﬁz—f + (Y:‘qﬂkn—f,ﬂ)gﬂ + (}’:Aukrz—:,r!)Grz
—Y:ﬁz—l + (T:ADkr:—LD)GD + (_si _TTaa—l + }’:Auku—l,u)Gu-
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inwhich p, = 6-2)’S + T~ V4A,-k,-,,-’/’1,1 =l+p ,0 =—4

+ P8, — y A, 2 =1 -y A, and R =~y A), with the
order of the matrix is (n — 1) x (n — 1). o

Y +yiay + (6 —¥°Sy — Rig) Gy — (R4,)G,
yqfﬂ + (_l - R:,O)GD - (;{2,?:)6?:
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G(xy)
G(x3)

G (xa)
G (xu—E)
G (xu—f)
G (xu—l)

V=

The linear system of equations is then solved by FSGS and
FSQM iterative method.

FORMULATION OF FULL-SWEEP QUADRATIC MEAN
ITERATIVE METHOD

Basically, FSQM iterative method is similar to AM and GM
methods which involved two levels of calculation which
if forward iteration,@f and backward iteration, @. These
two independent systems are created by rewriting the
coefficient matrix Y in the form of

Y=D-L-U (6)
where D, L and U are:

Second order FIDEs:

x 0 - 0 0
0 x 0 0
D=|: : P
o 0 .. x 0
o 0 - 0 x
where k =k .
0 0 0 0 0 0
011 0 0o .. 0 0 0
Nay  0s- 0 . 0 0 0
L= : : k : : :
Wy_31 Wp_32 Wy _33 0 0 0
w::—f,l w:z—f,f w:z—ﬂ,ﬂ QJ:—Z,J:—E O O
—w;;—Li w:z—l,f l:";:11—1,3 w:z—l,n—ﬂ QJ:—L::—Z 0-
and
[0 {2 wgy Wyn-3 Wing Win-1 |
gy O (23 Wypn-3 Wap_s Wapn—1
N31 @32 0 Wan-3 Wan-z Wan-1
U=\ : : i : : :
0 0 0 0 cn—ﬂ,n—: wn—a,n—l
0 0 0 0 0 c:z—:,:z—l
-0 0 0 0 0 0
Fourth order FIDEs:
- 1 -
——+p 0 0 0
hq
0 o 0 0
D= ; ; : :
0 0 p 0
1
0 0 -——+p
L hy
where p=p. .
0 0 0 0 0 0 0
T, , 0 0 0 0 0 0
b 0 0 0 0 0
L= N3,y Ju s Tag 0 0 0 0
&::—3,1 R::—E 2 x:z—.’:l,.’:l 8:1—3,4 0 0 0
K::—Z,l K::—E 2 Ku—f,a K::—E,é ru—f,u—a 0 0
-xn—l.l x::—l: x:!—l..’:l }{J!—l,é :J:—l,n—a Tn—1n-2 0]
and
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u= 0 0 0 0 84,::—3 Né,u—i Rf},n—l
0 O 0 0 O 8:1—3,::—2 :::—3,::—1
0o 0 0 0 . 0 0 I
L0 0 0 0 . 0 0 0

The general formulation of the FSQM iterative method is
displayed herewith:

(D —al)@; = (1—e)D —aU)Glf +af
(D —a)0, = ((1 —a)D — al)®, + af
1

oo (225 ()

2

where a represents the optimal parameters. The ith element
of vector @ is given as follows:

) (‘5'?* ;:-g)i, if@, > 0and @, > 0

% +05 :
i —1:{(—J’ﬂ—h) ,if @ <0and @, <0
11 &

B+ 0% T
i) Df — —'f—ﬂ ,if O =>0and @, <0
111 2

2 =z :
iv) @, — (m)s, if@ <0and @, >0

Based on these formulation from above, iterative form of
the FSQM method for solving linear system of equations is

0¥ = YoF +z, k=0,12,.. (8)
with
. L1
v — L7+ L5|2
2
and
z=cf
where

L =(D-aL) ' ((1-0)D — al)

L,=(D-al) ' ((1-a)D —alL)
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b=

a(D —al) *+a(D — al)*
2

The general condition which assures the FSQM iterative
method to converge in solving linear systems is proved
below with some theorems.

Theorem 1 Let Y be an n x n nonsingular diagonally
dominant matrix, the components x,, > 0. Fori = 1,2,..., n,
and by using matrix splitting, '

Y=H -K =H —K,
0=(H)"'K,r=12

where matrices (/)" and (/)" are nonsingular with
ICH) 1= 0, [[(K,)![| = 0, and [|(1,)"'[| = 0, [|(K,) ]| = 0. The
FSQM iterative scheme in Equation (8) converges for the
optimal relaxation parameter o in the interval 0 < o < 2.
Proof. By hypothesis, Y is an n X n nonsingular matrix.
Since H, = D — oL and H, = D — aU are strictly diagonally
dominant for 0 <a<2.

The matrices K, = (1 —a) D+aUand K, = (1 —a) D+ oL
are triangular and nonnegative.

Since
H—-K =H-K =Y

Then we have

L

e= E ()KL +% [(H:)_lK:]:}E == E (Hy)™ +%(H:)_:] '

or also can be written as

[

G +s @ - om

The proof of the theorem runs parallel to the standard
proof given in (Ortega 1973). Since O = (H)™' K , then the
spectral radius is

pQM (Q) < 1

Therefore, the FSQM iterative method converges for any
initial vector 1|.r'~°:' with conditions of 0 < o < 2. Hence,
Theorem 1 is proved.

The algorithm for solving FIDEs by using FDCT, FDCS1
and FDCS2 schemes and FSQM iterative method is stated
below:

Step 1: Set @, = @, = 0 and max = 10000
Step 2: Iteration cycle
fork=0,1,2, ..., max

fori =u, 2u, ...n — u, compute
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_ (k) @ i N— (€51
@fi =({1-a)o, +u_“ lfl i Ai,)@f)- _E}:iiu,H:u,HHuAi,) O} J

fori =u, 2u, ...,n — u, compute
0, =(1- a}@l;‘k) +—=
i Wi

£ i—u k _ Sn-u
[fz - Z_;l::z,:u A:‘,_;-‘ i = i 2w, i Ju “1:',,1' @b}-]

fori =u, 2u, ...n — u, compute

w e

(m) Jif @, > 0and @, >0

~

- -3 =
_1*(‘3*&)‘,1% <0and®@, <0

@(Hl) — 2
i 1
p3+0i
0, - (_.fﬂ_b)s,if@f >0and @, <0
pF+0f :
0, — (_fﬂ_b)’,if@f <0and @, >0

Step 3: If the convergence meets the requirement, proceed
to Step 4.

Step 4: Stop.

NUMERICAL SIMULATIONS

In this section, each example of the questions of second
and fourth order FIDEs are selected for experimental
calculations in order to analyze the efficiency of the
proposed full- and half-sweep QM iterative method with
FDCT, FDCS1, and FDCS2 discretization schemes. For
studying the effectiveness of the proposed methods, three
parameters are measured i.e., number of iterations, N,
execution time, ¢, and maximum absolute error, ¢y.

Problem 1 (Filiz 2000)
Given the second order FIDE

G"(x)=x—2+ J.lle)(x — )6 (Ddt

0
with the boundary conditions
G(0)=0, G(1)=0
The exact solution for the problem 1 is
G(x) = x(x —1)%

Problem 2 (Ullah 2015)
Given the fourth order FIDE

1
G””(x]—G(x)+x(l+e“)—3€x +f G(t)dt =0

with the boundary conditions

GO)=1, G()=1+e
G"0)=2, G"(1)=3e

The exact solution for the problem 2 is
G(x)=1+xe".

Throughout the simulations, the maximum tolerance
absolute error is set to the range of ¢ = 107'°. All the
numerical simulations have been calculated in a computer
with processor AMD Ryzen 5 5600H CPU @ 3.30GHz
and all the algorithm codes will be written in Borland C++
programming language. The mesh sizes for the second
order FIDE are 120, 240, 480, 960, 1200 while for the
fourth order FIDE are 12, 24, 48, 96, 120.

RESULTS AND DISCUSSIONS

Based on the numerical results in Table 2 and 3, it shows
that the proposed FSQM and HSQM methods have a better
result for solving second- and fourth-order FIDEs (Problem
1&2) compared to the FSGS method across all three
discretization schemes (i.e., FDCT, FDCS1, and FDCS2).
This is proven by the percentage reduction calculation as
shown in Table 4. The FSQM method showed a significant
reduction in the number of iterations and execution time,
with decreases ranging from approximately 84.84% to
86.51% and 64.80% to 69.03%, respectively, across
all three discretization schemes compared to the FSGS
method for solving the second-order FIDE (Problem 1).
Similarly, the HSQM method demonstrated even greater
improvements, with the number of iterations and execution
time reduced by approximately 95.42% to 97.61%
and 83.33% to 99.53%, respectively, across the same
discretization schemes, compared to the FSGS method. For
Problem 2, which involves solving the fourth-order FIDE,
the FSQM method achieved a decrease in the number of
iterations and execution time by approximately 86.48%
to 88.76% and 71.43% to 87.50%, respectively, across
all discretization schemes, when compared to the FSGS
method. In contrast, the HSQM method yielded even more
impressive reductions, with the number of iterations and
execution time decreasing by approximately 94.34% to
99.15% and 83.33% to 99.53%, respectively, across all
three discretization schemes, relative to the FSGS method.
Although the FSQM and HSQM methods achieve the
same level of accuracy as the FSAM and HSAM methods,
they require significantly less execution time, especially
for larger mesh sizes. This trend is also observed in the
performance of the HSQM, HSGS, and HSAM iterative
methods, as shown in the tables. Specifically, both the
FSQM and HSQM methods are more efficient, as they
achieve the same accuracy as the FSAM method but with
reduced computation time, making them particularly
advantageous when dealing with larger mesh sizes.
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Overall, the results clearly highlight the computational
advantages of the FSQM and HSQM methods over
the FSGS method. Both FSQM and HSQM methods
consistently achieve significant reductions in execution
time and iterations, while maintaining comparable
numerical accuracy. This improvement is attributed to the
QM method, which incorporates higher-order corrections
into the iteration process, enhancing the stability and
accuracy of the updates. As a result, errors are reduced
more rapidly across the grid. The superiority of the QM
method is evident across various discretization schemes
and problem configurations, establishing it as an efficient
solution for solving dense linear systems. These findings
advocate for the use of the QM method, especially when
combined with efficient schemes like FDCS2, as the
preferred approach for solving second- and fourth-order
FIDEs. Among the methods discussed, the HSQM iterative
method emerges as the most efficient in terms of both
the number of iterations and execution time. To provide
better clarity, the performance of the proposed methods is
illustrated in Figures 1 to 4. These figures present a detailed
analysis of the number of iterations and execution time in
relation to mesh size.

INNOVATIONS AND PERFORMANCE OF THE FSQM/HSQM
METHODS

The FSQM iterative method represents a significant
departure from conventional iterative approaches through
its sign-sensitive quadratic mean formulation. Unlike
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the FSGS method which relies on unidirectional updates
without combining iterative sweeps or the FSAM method
which has linear averaging (¢ = (¢, + ¢,)/2), the
FSQM method dynamically weights forward (¢,) and
backward (g, ) sweeps based on their sign alignment.
This innovation employs a non-linear fusion: when both
sweeps agree in sign, it computes their root-mean-square;
when they conflict, it applies bias-correction terms. This
approach enhances stability by amplifying consensus
between sweeps and suppressing oscillatory errors, a
limitation of simpler averaging techniques.

Further efficiency is achieved via the HSQM
variant, which optimizes computational load by updating
only every second grid point (i = u, 2u, ..., n — u). This
strategy reduces operations per iteration by = 50% while
maintaining accuracy comparable to full-sweep methods
(Tables 2 — 3). The half-sweep paradigm also improves
memory efficiency by minimizing data access in dense
matrices, making it particularly advantageous for large-
scale systems. Theoretically, the authors establish rigor
through Theorem 1, which guarantees convergence for
the relaxation parameter a € (0,2), and a novel matrix
decomposition (Y = D — L — U) that updates forward/
backward sweeps in Equation (7). This foundation ensures
robustness across diverse problem configurations.

Empirical results underscore the superiority of
HSQM in practical applications. In speed and efficiency,
the methods reduce iterations by 86-89% and execution
time by 67-88% compared to FSGS across mesh sizes
(Table 4, Figures 2, 4). They also outperform FSAM by

TABLE 4. Percentage reduction in number of iterations and execution time for FSQM and HSQM methods compared to

the FSGS
Problem 1
Methods FDCT FDCS1 FDCS2
Iterations Execution time Iterations Execution time Iterations Execution time
FSQM  84.84-86.51% 66.08 - 68.83% 84.85-86.51% 64.80-67.85% 84.85-86.51% 66.42-69.03%
HSQM  95.42-96.19% 96.49 -97.69% 95.42-96.19% 96.49 -97.61% 95.42-97.61% 96.11 - 97.74%
Problem 2
Methods FDCT FDCS1 FDCS2
Iterations Execution time Iterations Execution time Iterations Execution time
FSQM  86.48 - 88.76% 80.83 - 86.81% 86.48 - 88.76% 80.16 - 87.50% 86.48 - 88.76% 71.43 - 86.73%
HSQM  94.34-99.15% 83.33-99.24% 94.34-99.15% 87.50-99.50% 94.34-99.15% 85.71 - 99.53%
TABLE 5. Summary of comparative advantages
Method Iterations Speed Memory use  Accuracy Innovation
GS/HSGS High Slow Moderate Good Baseline
AM/HSAM Medium Medium Moderate Good Arithmetic mean
QM/HSQM (Proposed) Lowest Fastest Efficient Equal Quadratic mean + half-sweep
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FIGURE 1. Number of iterations versus mesh size of the iterative
methods used to solve Problem 1

10000
9000
8000
7000
6000
5000
4000
3000
2000 Lo

1000 =

120 240 360 480 600 720 840 960 1080 1200

Mesh size

FIGURE 2. Execution time versus mesh size of the iterative methods
used to solve Problem 1
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5-10% in runtime while matching accuracy-attributed
to the error-cancelling properties of quadratic fusion.
Scalability is demonstrated in large-mesh scenarios: for
Problem 1 (1,200 nodes), HSQM+FDCT solves in 216
seconds versus FSGS’s 9,372 seconds (43x faster); for
Problem 2, HSQM+FDCT finishes in 12.65 seconds
versus FSGS’s 2,438 seconds (193x faster). Crucially,
these gains do not compromise accuracy preservation, as
HSQM maintain error magnitudes (¢, ~ 107°- 10™) across
FDCT, FDCSI, and FDCS2 discretization schemes. The
synergy of HSQM with FDCS2 (Composite Simpson’s
3/8) emerges as the optimal configuration for fourth-order
FIDEs, achieving the lowest iterations and time in Table
3 by combining high-order integral approximation with
half-sweep efficiency. The HSQM framework redefines
computational efficiency for Fredholm integro-differential
equations by merging mathematical innovation (sign-
adaptive quadratic averaging) with strategic optimization
(half-sweep updates). Its demonstrated advantages in speed,
scalability, and accuracy position it as a transformative tool
for large-scale scientific simulations. The effectiveness
of the methods has been summarized in Table 5 at the
Appendix. Future work could explore adaptive a tuning or
parallelization to further amplify performance.

CONCLUSIONS

This paper presents the novel FSQM and HSQM iterative
methods for solving dense linear systems derived from the
discretization of second- and fourth-order FIDEs. Through
comprehensive numerical simulations, it is evident that
the FSQM and HSQM methods outperform the traditional
FSGS method in terms of computational efficiency. Both
methods significantly reduce the number of iterations and
execution time, with reductions ranging from 84.84% to
97.74% for the FSQM method and up to 99.53% for the
HSQM method across various discretization schemes. The
proposed methods, particularly the HSQM variant, offer
substantial computational advantages, especially for larger
mesh sizes, while maintaining comparable accuracy to
existing methods. The efficiency of the FSQM and HSQM
methods stems from their novel integration of the quadratic
mean formulation and the half-sweep technique, which
together enhance the stability, accuracy, and convergence
speed of the iterative process.

These findings highlight the potential of the FSQM
and HSQM methods as efficient tools for solving
high-order integro-differential equations in scientific
simulations, particularly in applications requiring large-
scale computations. Future research could focus on further
optimizing these methods, exploring adaptive tuning or
parallelization strategies to extend their applicability to
even larger and more complex systems. The success of these
methods in improving computational efficiency without
sacrificing accuracy marks a significant advancement
in numerical solution techniques for Fredholm integro-
differential equations.
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