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ABSTRACT

In this paper, some time-independent diffusion-convection problems in anisotropic media are considered. To study the
problems, the governing equation of the problems is transformed into a diffusion-convection equation in a homogeneous
isotropic media. The transformed equation with respect to transformed boundary conditions are solved numerically using
Dual Reciprocity Boundary Element Method (DRBEM). The method is tested using several problems involving time-
independent diffusion-convection. Two of the problems are with analytical solution, and the other problems are with point
sources without known analytical solution.
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ABSTRAK

Dalam makalah ini, beberapa masalah resapan-konveksi bebas masa dalam media anisotropik dipertimbangkan. Untuk
mengkaji masalah, persamaan yang mengawal masalah diubah menjadi persamaan resapan-konveksi dalam media homogen
isotropik. Persamaan berkenaan dengan keadaan sempadan yang diubah diselesaikan secara berangka menggunakan
Kaedah Unsur Dual Kesalingan Sempadan (DRBEM). Kaedah ini diuji menggunakan beberapa masalah yang melibatkan
resapan-konveksi bebas masa. Dua daripada masalah adalah dengan penyelesaian analitik dan masalah lain adalah dengan
sumber mata tanpa penyelesaian analitik yang diketahui.

Kata kunci: DRBEM; media anisotropik; resapan-konveksi bebas masa; sumber mata

INTRODUCTION One approach to studying diffusion-convection in

Diffusion-convection challenges have long captivated anisotropic materials is through mathematical modeling.

researchers. Numerous studies have explored these topics,
including those by Capinski et al. (1999), Huxtable et
al. (2004), Norris et al. (2003), and Paddock and Eesley
(1986). Paddock and Eesley (1986) investigated transient
thermoreflectance in thin metal films. Capinski et al.
(1999) focused on measuring thermal conductivity using
a picosecond optical pump and probe technique. Norris
et al. (2003) applied femtosecond pump-probe methods
to analyze certain materials, and Huxtable et al. (2004)
conducted thermal conductivity imaging at a micrometer
scale. The majority of these studies are experimental in
nature.

However, analytical solutions are typically not possible for
the resulting mathematical model. Thus, this paper employs
a numerical solution using a type of Boundary Element
Method (BEM) known as the Dual Reciprocity Boundary
Element Method (DRBEM). A key advantage of these
methods is their capability to reduce the dimensionality
of the problem. The time-independent, two-dimensional
spatial problems examined here can be reduced to one-
dimensional problems. Many researchers have used
boundary element methods in their studies (Ashar &
Solekhudin 2021; Clements & Lobo 2010; Munadi et al.
2020, 2019; Solekhudin 2018). For instance, Clements and
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Lobo (2010), Munadi et al. (2019, 2020), Solekhudin, Sari
and Makhrus (2024), and Solekhudin et al. (2018) applied
boundary element techniques to analyze water infiltration
in homogeneous soils, while Ashar and Solekhudin (2021)
employed this method to simulate substance dispersion
from a point source in a river.

Researchers have primarily focused on problems in
homogeneous materials. However, some studies have
applied boundary element techniques to nonhomogeneous
materials as well. For example, Solekhudin (2020) used
the method to solve infiltration problems in layered soils,
while Ang and Clements (2009) applied it to the nonlinear
heat equation in nonhomogeneous anisotropic materials.
Additionally, Azis et al. (2021) utilized the technique to
address issues in anisotropic functionally graded materials.

This study extends the work of Ashar and Solekhudin
(2021), in which the fluid was assumed to be homogeneous.
In the present paper, we address the effects of fluid
heterogeneity. Specifically, we investigate time-dependent
diffusion-convection problems in a heterogeneous fluid
with a point source. As in the previous study, the DRBEM is
employed to solve the problems. To evaluate the accuracy
of the method, two test cases with known analytical
solutions are created. Subsequently, the method is applied
to time-independent diffusion-convection problems
involving a point source, for which no analytical solutions
are available.

PROBLEM FORMULATION

In this study, we investigate fluid flow through a straight
channel that has a width of one unit. At one boundary of
the flow domain, there is a discharge pipe that releases a
substance, such as a pollutant, into the flow. The geometry
of the problem is illustrated in Figure 1.

The fluid is assumed to be heterogeneous, with
no flux across the boundary. It is further assumed that,
beyond a certain downstream distance from the pipe,
the concentration of the substance becomes uniform (the
flux is zero). Based on these assumptions, this research
examines the influence of fluid heterogeneity, convection
coefficients, and quantity of the substance source on the
distribution of the substance within the fluid.

Pipe

MATHEMATICAL MODEL AND NUMERICAL SOLUTION
METHOD

In this section, the mathematical model of steady diffusion-
convection problems in anisotropic media with a point
source is presented. A brief derivation of DRBEM for
solving the problems is also presented. The general form of
diffusion-convection equation is (Atangana 2018)

d
a—? =V.(DVu —vu) + g, (1)

where u is the substance concentration; D is the diffusivity;
v is the velocity with which the substance moving; and g
is the source or sink term. In this study, it is assumed that
no chemical reactions affect the quantity of the substance,
so the function g depends solely on space. For steady two-
dimensional diffusion-convection in heterogeneous media,
Equation (1) can be written as

ke + Gtk u, + k22uyy —vu vt gxy) =0.(2)

Here [k,-,-] is the diffusivity, and v =[v,v,], where v, and v,
are components of fluid velocity vector in x and y direction
respectively.

In problems involving a point source located at (a, b),
where the total substance released from the source is given

by O(x, y) = O(a, b), the source term g can be written as

glx, y)=0(x,y) 0 (x,y; a,b)

where QO represents the source intensity and ¢ denotes the
Dirac delta function. The delta function is defined as

0, (x,v)#(ab)
8(x,v;a,b) =

o, (x)=(ab)

and satisfies the property
oo oo b+e ate

J JQ(x,y)ﬁ(x,y:a,b)dxdy= I J Q(x,y)8(x,y; a,b)dxdy = Q(a.b),

oo = b-e a-g

FIGURE 1. Geometrical setup of the problem in this study



for any ¢ > 0. This representation captures the assumption
that the source is concentrated at a single point (a, b),
with no contribution elsewhere, and that the total quantity
of substance introduced into the fluid equals Q(a, b),
consistent with the modelling framework.

The problem described in the preceding section has
the following domain

Q={(x,y):xeRand0<y<1}.

To implement the Dual Reciprocity Boundary Element
Method (DRBEM), it is necessary to have imposed
boundaries such that the domain is enclosed by a simple
closed curve. For this purpose, the values of x must lie
within an interval [¢, f ], where o, ff € B. The source point
is taken to be (1,0). Through a series of trial-and-error
computational experiments, the interval [o, £] = [0, 5] was
identified as appropriate, as it ensures that the imposed
boundary does not affect significantly on the solution at
interior points. Now, the new domain is

Q' ={(x,y):0<x<5and0<y<l},
bounded by a simple closed curve T'. Hence, the boundary

conditions for the diffusion-convection problems described
in the preceding section are

u=0,x=0and0<y<1, 3)
v=0,0<x<5andy =0, 4)
v=0,x=5and0<y<]l, %)
v=0,0<x<5andy=1, (6)

where v = Zj=1 Xiny ka;z—:ﬂx; is the flux. Here x = x and
x,=y,and n = [n, n ] is the normal vector pointing out
region Q.

The DRBEM cannot be applied to solve Equation (3)
dueto the inequality k,, # k,, andthe presence of theu |
term. Therefore, it is necessary to transform the coordinate
system into a new one through a set of transformations,
as outlined by Pramesthi, Solekhudin and Azis (2021). A
summary of the set of transformations is provided below;
for more comprehensive details, please refer to Pramesthi,
Solekhudin and Azis (2021).

Let

Making use of rotation

=15 SIE)
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and dilatation

142 1/2
X=x’(i) . Y=v’(i) ,
k, - \k,

Equation (1) can be transformed into
u +tu —Vu —-Vu +aGxy =0, 7

where

142 1/2

v, = (vyp +v,q) (E) Vo = (vop —vyq) (E) ,
1 -

p and g satisfy p> + ¢*> =1,

P bl B ] [y

1 1 1
k)2 kT (kg k\2
X0 *’(7) X“?(T) "’q(r) “P(r) Via,b |

Here k&, and k, are the eigenvalues of matrix K. Moreover,
domain Q', boundary T’, and Boundary conditions (3) to
(6) are also transformed using the same transformations.
Let the transformed domain and boundary are denoted by
O* and T*, respectively.

Now, we solve the diffusion-convection with a point
source modelled in Equation (7), with respect to the
transformations of Boundary conditions (2) — (5) using
the DRBEM. To implement the DRBEM, using Gauss’s
theorem, we can express the solution of Equation (7) in an
integral equation. The integral equation is

d du
A mu(En) = f [u(m’)% (Y5 Em) —¥(XY; &) 5 (X 1)]ds
#
(®)

+ ﬂ WY ) Vit + VaugdXay — W(a, b £,0) Qa, b),
o

where T* and Q* are the transformations of T' and Q’,
respectively, W (X, ¥; &, 1) is the fundamental solution of
Laplace equation, and
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1, (&,79) et
A =

3 (£,77) on smooth part of T*

The DRBEM is formulated based on Integral Equation (8).
The implementation of the DRBEM proceeds as follows:

Boundary Discretization

The boundary T* is discretized into N connected line
segments, denoted by C", n=1, 2, ..., N.

Collocation Points

For each boundary segment, the midpoint is selected as
a collocation point. Additionally, L interior collocation
points are chosen within the domain. In total, there are N+L
collocation points, denoted as (a®, b®), for k=1, 2, ...,
N+L.

Function Approximations

. .. )
The values of u and its normal derivative — on each
segment are approximated by: "

(u(x.y) = u(a®, bO) = u®,

and

du du
— (x y) &

3]

=y,

aﬂ (xy)= Iﬁlmbl'{lj

Formulation of the System of Linear Equations
Substituting these approximations into the integral equation
(8), and evaluating the solution at the collocation points,
(&n) = (a™, b™), the problem is reduced to a system of
linear equations of the form:

N N+L
I J!),u" n) _— Z ?!k]‘ Ik)

“k)‘t " )] + Z _u'”k)[V'u. +1 u. }]
k=1

k=1
— ¥(a,b;&1)Q(a,b), n=12,..,N+L.

The terms involved in this formulation are defined as
follows (Ang 2007):

‘ . . ¢ v . .
:Fl\nk) - J ‘F[X, ¥; a"k),b"k))ds, "E‘“k) - J a_ (_X, ¥; a‘k),b‘k))ds‘,
- mn

ctk cth
and
N+L
Fl::'zk} — Z I—-I::lzm}m{mk}l
m=1
Here

N
rinm) — AI:H}XI:J”H) + ZI}F]_I:?”{}XI:HJ{} _:El::'zk}xnj:-zk}}
n 2 !
k=1

™ is defined by

N=L 1, ifm=n
Z m(mk)p(k:z} — ,
k=1 0, ifm=n

p(k:z} =14 [a':k}' _ a(:z}l): + [:b':k) _ b(n)):
+ I:v'"(a(k) —am)z  (p b(n)):r’

and
a-::-z))f + (% —

17, o
_6[[0'\ ) _

1r —
Z () _
+ 2 [\-“ (a

y(ken) — i [[aik) b'::'z))g]

al:?!:]): + [bl'k:l _ bl::l!)):]:

_ . _ 5
a™)z 1 (pla — buz]‘]:} _

Solution of the System of Linear Equations
The resulting system is solved to obtain the values of u at
the collocation points.

RESULTS AND DISCUSSION

In this section, the DRBEM is applied to solve diffusion-
convection problems with a point source in heterogeneous
media. Initially, the DRBEM is used to solve two diffusion-
convection problems with known analytical solutions. This
implementation aims to evaluate the method’s accuracy
and efficiency. Subsequently, the DRBEM is employed to
solve a variety of diffusion-convection problems with a
point source in heterogeneous fluid flows.

PROBLEMS WITH KNOWN ANALYTICAL SOLUTIONS

We consider two problems with known analytical solutions.
The two problems are as follows. Problem 1

The first problem considers a diffusion-convection
governed by the partial differential equation

2u +2u — Suyy +10u, + 4uy =0, (8)

subject to the following Dirichlet boundary conditions:

u=-exp(x),0<x<landy=0, 9)
u=exp(-1-2y),x=1land0<y<1, (10)
u=exp(x-2),0<x<landy=1, (11)

u=-exp(—2),x=0and0<y<1. (12)

The analytic solution to this boundary value problem is
given by

u=exp(=x-—27y). (13)



TABLE 1. Numerical vs analytical results obtained using 20 segments and 80 segments at selected points

Point Numerical results Analytical Absolute errors

20 Segments 80 Segments results 20 Segments 80 Segments
(0.1,0.1) 0.74656665 0.74083991 0.74081822 0.00574843 0.00002169
(0.5,0.1) 0.49798653 0.49660038 0.49658530 0.00140122 0.00001507
(0.9,0.1) 0.33444177 0.33291510 0.33287108 0.00157068 0.00004401
(0.1,0.5) 0.33473802 0.33293328 0.33287108 0.00186693 0.00006220
(0.5,0.5) 0.22333456 0.22315852 0.22313016 0.00020440 0.00002836
(0.9,0.5) 0.15112736 0.14957991 0.14956862 0.00155874 0.00001130
(0.1,0.9) 0.15422081 0.14963251 0.14956862 0.00465219 0.00006389
(0.5,0.9) 0.10133543 0.10030410 0.10025884 0.00107659 0.00004525
(0.9,0.9) 0.07201250 0.06726116 0.06720551 0.00480698 0.00005564

To solve this problem, the DRBEM is implemented using
361 interior collocation points. Two different sets of line
segments are considered: 20 segments and 80 segments.
Some of the results are summarized in Table 1.

Table 1 shows that the DRBEM yields more accurate
results when 80 boundary segments are used, compared
to the results obtained with only 20 segments. This
observation indicates that increasing the number of
boundary segments enhances the accuracy of the numerical
solution. Furthermore, the numerical results show good
agreement with the corresponding analytical solution,
confirming the reliability of the method.

Problem 2
In this problem, a diffusion-convection problem with a
source term is governed by

u, +4u —3u +9u +4u + 3m’exp (—x) sin

; ) 14
()= 0, (1
with boundary conditions as follows.

v=-3mexp (—x),0<x<1landy =0, (15)
u=-exp (-1)sin(my),x =1land 0 <y <1, (16)
u=0,0<x<landy=1, (17)
v =9sin(ny),x=0and 0 <y <I. (18)

The analytic solution of Problem 2 is
u = exp (—x) sin(my). (19)

To solve Problem 2 as that in Problem 1, 361 interior
collocation points are used. Four segment configurations
are considered: 40, 80, 120, and 160 segments. Some of the
results obtained are presented in Figure 2.

Let £ be the absolute error of the numerical solution
obtained. Figure 2 illustrates the graphs of log(£) obtained
by implementing the DRBEM with 361 interior points with

four different numbers of segment. Specifically: Figure
2(a) shows log(E) at x = 0.2, Figure 2(b) at x = 0.4, Figure
2(c) at x = 0.6, Figure 2(d) at x = 0.8. Figure 2 presents
the numerical error and solution comparison for a 2D
simulation problem at four different lines along the y-axis.
Subplots (a) through (d) illustrate the logarithmic absolute
error, log(E), of the numerical solution with respect to the
analytical solution for different values of x = 0.2, 0.4, 0.6,
and 0.8, respectively. Four different boundary discretization
are evaluated: N =40, 80, 120, and 160.

Across all subplots, it can be observed that the
numerical error decreases as the segment or element
increases (i.e., higher N). For instance, in each subfigure, the
curve corresponding to N = 40 results in the highest error,
while N = 160 shows the lowest. This behaviour confirms
that the numerical method employed is convergent, and
increasing the number of segments improves accuracy.

Subfigure (e) compares the numerical solutions at
different values of x, x = 0.2, 0.4, 0.6, and 0.8 for a fixed
number of segments, N = 40 with the analytical solution
(represented by square markers). As can be observed,
the numerical results relatively close to the analytical
solutions, suggesting that even at a relatively small number
of segments, the numerical scheme shows a good accuracy.
These findings affirm that DRBEM is an effective numerical
approach for addressing diffusion-convection problems of
this type.

PROBLEMS WITH UNKNOWN ANALYTICAL SOLUTIONS

In this section, we examine the spread of substances
originating from a point source within the laminar flow of
a heterogeneous fluid along the x-axis (where v, = 0). The
mathematical formulation of these problems is represented
by the equation:

ke, + (ky+ky u, T(];EZWO_ viu, + O (xy) o(x.y;

B b}

(20)
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FIGURE 2. Absolute errors resulted from various line segments at
selected values of x and comparison of numerical vs analytical

solutions




subject to the boundary conditions outlined in Equations
(2) through (5). Four distinct problem scenarios are
explored in this section. Before delving into the four cases,
it is essential to determine the number of elements required
to implement the DRBEM effectively, ensuring a balance
between accuracy and computational efficiency. For this
purpose, we examine the substance dispersion problem
governed by the equation:

u _+4u + 3uvy —2u_+26(x, ;1,0 =0, 21)

subject to boundary conditions given in Equations (3) to
(6). In this analysis, 931 interior collocation points are
used. We explore six different element (V) configurations:
60, 120, 180, 240, 300, and 360. The DRBEM is
implemented using MATLAB R2018b with these segment
configurations. Table 2 summarizes the computational
time associated with running the numerical simulations.
As the problem lacks an analytical solution, we define a
quantity d(x,y) as follows:

O(x,y) = [uCx,y) =y, (51, (22)

where u (x,y) represents the numerical solution at (x,))
obtained using the specified number of segments, and u,,
(x,») is the numerical solution at (x,y) computed with 360
segments. Selected values of J are displayed in Figure 3.

Figure 3 illustrates the values of ¢ within the domain.
Specifically, Figure 3(a) presents 0 values at five distinct
points along x = 1, Figure 3(b) shows values at x = 3, and
Figure 3(c) displays values at x = 4.5. Figure 3(d) shows
surface plots of J. From the figure, it is evident that &
increases as x becomes larger. Additionally, as N increases,
the values of 0 decrease. Notably, for N =240, the J values
are relatively small or close to zero. Based on these results,
N =240 is selected for implementing the DRBEM to solve
the subsequent problems.

Problem Set 1

In this set, the diffusivity coefficients are defined as &, =9,
k,,=2,and k,,= 3 . The focus is on examining the effects of
fluid velocity and the amount of substances emitted from
the source on substance dispersion. Two values of v, are
considered: v, = 1 and v, = 2. Additionally, two different
values of O(x,y) are examined: O(x,y) = 1 and O(x,y) = 2.

Problem Set 2

In this set, the diffusivity coefficients are fixed at k, =9
and k,,= 3, while the flow velocity is set to v, = 2, and the
source quantity is O(x, y) = 2. The diffusivity k,, is varied,
with three values being analyzed: k,,= 1,k ,=2,and k,=
3. The purpose of varying k,, is to analyze the effect of k,
to the values of u. Selected numerical solutions from both
Problem Set 1 and Problem Set 2 are depicted in Figure 4.

Figure 4(a) presents the numerical results from

Problem Set 1, where four scenarios are analyzed. The
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first scenario examines substance dispersion with a source
quantity of O(x,y) =2 in a homogeneous fluid characterized
by flow velocity v, = 2 and diffusivity coefficients of 4.8.
In the other three scenarios, the diffusivity coefficients are
setas k,,=9,k,=2,and k,= 3. In the second scenario,
we set v, = 2 and Q(x, y) = 2. The third scenario uses
v, = 2 and Q(x, y) = 1. The fourth scenario considers
v, = land Q(x, y) = 2.

It can be seen that at smaller values of y, the highest
concentration of substance occurs at x = 1, which is the
point of source located. The results indicate that substance
dispersion is higher in a homogeneous fluid. This suggests
that lower horizontal diffusivity (k, ) leads to increased
substance accumulation. This finding aligns with real-
world observations: when substances are continuously
released into a medium with low diffusivity, the slower
dispersion causes higher substance concentrations over
time compared to a medium with higher diffusivity, which
allows faster spread.

Among the three cases with heterogeneous fluids,
the scenario with v, = 1 exhibits the highest substance
concentration, which is expected because the slower
horizontal flow results in reduced dispersion. Conversely,
the scenario with v = 2 and Q(x, y) = 1| has the lowest
substance concentration. This can be attributed to the
reduced amount of substances being released, which is half
that of the other cases.

Figure 4(b) displays graphs of u along the x-axis at
selected y-values for the case where k, = 9 and k,, = 3,
with three different values of k ,. In this scenario, the flow
velocity is v, = 2 and the substance source quantity is O(x,
») = 2. The results indicate that an increase in k,, leads to
higher substance distribution.

Problem Set 3

In this analysis, the diffusivity coefficients k,,= 2 and £k,
= 3 are held constant, while the flow velocity is set to v,
= 2, and the source term is O(x, y) = 2. The diffusivity
k,, is varied, taking the values k, =7, k, =9 , and k, =
11. The objective is to study how changes in k,, affect the

distribution of u.

Problem Set 4

Here, the diffusivity coefficients k,, = 9 and k,= 2 are
fixed, with the flow velocity set to v, = 2, and the source
term defined as Q(x, y) = 2. The diffusivity k,, is varied,
analyzing the values k,,= 1, k,,= 3, and k, = 5. This
variation aims to examine the influence of k,, on the
distribution of u. Selected numerical results from Problem
Set 3 and Problem Set 4 are illustrated in Figure 5.

Figure 5(a) displays numerical results from Problem
Set 3. The diffusivity coefficients are k,, =k, =2 and k,,
= 3, with the source term Q(x, y) = 2 and flow velocity v,
= 2. Three scenarios are analyzed: the first considers k&,
=9, thje second uses k, = 7, and the third employs k,, =
11. For all scenarios, four fixed y-values are examined: y
=0.1,y=0.3,y=0.6,and y = 0.9. The aim is to evaluate
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TABLE 2. Computational time needed for running the code for implementing the DRBEM

Number of segments Computational time (s)
60 55.047675
120 107.576988
180 178.185288
240 247.787502
300 339.073585
360 400.235451

0.025
0.02
0.015
w
0.01 0.025
0.005
B
0 : B S a a
N = 60 N=120 N=180 N=240 N=300 N=360
Number of segments N = 120
0.02
(a) x=1
0.025 IL
0.02 40.015
O (3.00.1)
0.015 O (3.0,0.3)
= (3.0,0.5)
0.01 O (3.0,0.7)
m O (3.0,0.9)
-]
0.005 g
4 0.01
0 : ‘ 9 o a 1r
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Number of segments > 05
0
(b)x=3 0 1 2 3 4 5
X 0.005
N =300
0.025 | 1
0.02 > 0.5
o O (450.1) 0
. O (4.503)
o (4.5,0.5) 0 1 2 3 4 5 0
0.01 - O (4507) X
B O (4.50.9)
0.005 o
. (d) Surface plot of the values of §
L . ]

0 - - : a
N =60 N=120 N =180 N =240 N =300 N =360
Number of segments

(c)x=4.5

FIGURE 3. Values of ¢ at selected absolute errors resulted from various
line segments at selected values of x and comparison numerical vs
analytical solutions
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how variations in k,,, horizontal diffusivity, influence the
substance distribution in fluid. It is evident that higher
horizontal diffusivity reduces substance concentration,
which aligns with expectations: faster spreading results in
lower concentrations.

Figure 5(b) illustrates graphs of « along the x-axis for
the same y-values as in Figure 5(a), focusing on the scenario
where k, =9 and k, = k,, = 2 . Here, three different values
of k, are considered. The flow velocity remains v, = 2, and
the source term is O(x, y) = 2. The objective is to observe
the effect of vertical diffusivity on substance distribution
in fluid. The results show that increasing k,, leads to lower
substance concentrations, similar to the patterns observed
in Figure 5(a). Higher diffusivity values enhance spreading,
which in turn decreases concentration levels in the fluid.
The distribution of substance concentration in the fluid for
all cases is represented as surface plots in Figure 6.
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CONCLUDING REMARKS

The Dual Reciprocity Boundary Element Method
(DRBEM) is used to solve diffusion-convection problems
involving the spread of substances from a point source
in a flowing heterogeneous fluid. Initially, the method is
applied to two problems with known analytical solutions to
validate its accuracy. Following this, it is used for solving
substance spread problems where analytical solutions are
unavailable.

In cases with known analytical solutions, the results
show that increasing the number of boundary elements
improves accuracy. However, this also increases
computational time. For the substance spread problems
in flowing heterogeneous fluid, the DRBEM is applied
under various conditions. In one scenario, the diffusion
coefficients are fixed, and the fluid flow velocity and the
quantity of substance entering the fluid are varied. Another
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FIGURE 6. Surface plots of « for all problems analysed in this study
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scenario involves fixing the flow velocity, the substance
quantity, and the diffusion coefficients, except for the
horizontal diffusion coefficient, which is varied. A similar
scenario considers varying the values of & ,. In a further
scenario, all parameters are fixed except k,,, which are
varied.

The results show that lower fluid flow velocities lead
to higher substance concentrations in the fluid. Similarly,
lower horizontal and vertical diffusion coefficients result
in higher concentrations. However, decreasing k , leads
to lower concentrations. Additionally, increasing vertical
diffusion coefficients is more effective at reducing

substance concentrations compared to horizontal
diffusion coefficients.
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