
Chapter 1

Fundamental Concepts

1.1 Introduction

The �nite element method (FEM) has become a powerful tool for the

numerical solution of a wide range of engineering problems. Application

ranges from deformation and stress analysis of automotive, aircraft, build-

ing and bridge structures to �eld analysis of heat �ux, �uid �ow, magnetic

�ux, seepage and other �ow problems. Research about its application is

still open and carried out which also covers non engineering �elds such as

economic analysis, optimization and so on.

Figure 1:

Relationship between CAD, CAE and CAM is shown in Figure 1
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1.2 Historical Background

In 1941, Hreniko� presented a solution of elasticity problems using the

`frame work method' to analyse aircraft structure. In 1960, the term �nite

element was introduced by Clough. The �rst book on �nite element by

Zienkiewicz and Cheung was published in 1967. By late 1960s and early

1970s, �nite element analysis was applied to nonlinear problems and large

deformations. A book on nonlinear continua appeared in 1972 by oden.

Today, the development in mainframe computers and avaibility of powerful

microcomputers has brought this method within reach of students and

engineers.

Figure 2:

Computer plays an important role in FEM. Nowadays, many FEM com-

mercial packages can be found such as Pro-Engineer, COSMOS/M, AL-

GOR, LUSAS and others. Its provide easy use of input and output facili-

ties. However, this package is not provided with source code and solution

method. Because of this reason, the learning process as engineer should

cover the theory development so that the total solution and result inter-

pretation can be done correctly.

1.3 Stresses and Equilibrium
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Figure 3:

By considering a three dimensional solid body as shown in Figure 1.3.

Under the force, the body deforms. The deformation of a point x
(

= [x, y, z]T
)
,

is given by the three components of its displacement:

u = [u, v, w]T

The distributed force per unit volume, for example, the weight per unit

volume, is the vector f which is given by:

f = [fx, fy, fz]
T

The surface traction T, for example, the contact force or action of pressure

is given by:

T = [Tx, T y, Tz]
T

A load , P acting at a point i is represented by its three components :

From Figure 1.4 above, stresses acting on point x is given by:

σ = [σx, σy, σz, τyz, τxz, τxy]T
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Figure 4:

where σx, σy, σzare normal stresses and τyz, τxz, τxyare shear stresses. Let us

consider equilibrium of the elemental volume shown in Figure 1.4. Writing∑
Fx = 0,

∑
Fy = 0and

∑
Fz = 0and recognizing dV = dxdydz we get the

equilibrium equation:

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxy

∂z
+ fx = 0

∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ fy = 0

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ fz = 0

1.4 Boundary Conditions

Referring to Figure 1.4, we �nd that there are displacement boundary

conditions and surface-loading conditions. If there are no displacement on

part of the boundary denoted by Su we have:

u = 0on Su

We can also consider boundary conditions such as u = awhere ais a given
displacement.
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Figure 5:

Consider the tetrahedron elemental as shown in Figure 1.5. Area is de-

noted by dA. If n = [nx, ny, nz]Tis the unit normal to dA, then area

BDC = nxdA,area ADC = nydA and area ADB = nzdA. Consideration of

equilibrium along the three axes directions gives σxnx+τxyny+τxznz = Tx

τxynx + σyny + τyznz = Ty

τxznx + τyzny + σznz = Tz

These conditions must be satis�ed on the boundary, ST , where the trac-

tions are applied.

1.5 Strain-Displacement Relations

We represent the strains in a vector form

ε = [εx, εy, εz, γyz, γxz, γxy]T

where εx, εy, εz and are normal strains and areγyz, γxz, γxy the shear strains.

We can also write these strains by
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ε =
[
∂u
∂x ,

∂v
∂y ,

∂w
∂z ,

∂v
∂z + ∂w

∂y ,
∂u
∂z + ∂w

∂x ,
∂u
∂y + ∂v

∂x

]T

Figure 6:

These strain relations hold for small deformations.

1.6 Stress-Strain Relations

For linear elastic materials, the stress-strain relations come from the gen-

eralized Hooke's law.

εx =σx

E − v
σy

E − v
σz

E

εy =σx

E − v
σy

E − v
σz

E

εz =σx

E − v
σy

E − v
σz

E

γyz = τyz

G

γxz = τxz

G

γxy = τxy

G

where G is the shear modulus (or modulus of rigidity) is given by:

G = E
2(1+v)
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Relations that can be introduced is

σ = Dε

where D is the symmetric (6 x 6) material matrix given by:

D = E
(1+v)(1−2v)



1− v v v 0 0 0
v 1− v v 0 0 0
v v 1− v 0 0 0
0 0 0 0.5− v 0 0
0 0 0 0 0.5− v 0
0 0 0 0 0 0.5− v


For one dimensional cases, stress-strain relations are simply:

σ = Eε

While for two dimensional cases, the problems are modeled as plane stress

and plane strain.

1.6.1 Plane Stress.

Figure 7:

A thin planar body subjected to in-plane loading on its edge surface is

said to be in plane stress. A ring press �tted on a shaft as shown in Figure

1.7 as example. Here, stresses σz, τxz and τyz are set as zero.

The material matrix becomes:
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D = E
(1+v)(1−2v)

 1− v v 0
v 1− v 0
0 0 1

2 − v


1.7 Temperature E�ects

For isotropic material, the temperature rise ∆T results in a uniform strain.

It depend on the coe�cient of linear expansion α of the material. This

coe�cient represent the change in length per unit temperature rise. The

temperature strain is represented as an initial strain:

ε0 = [α∆T, α∆T, α∆T, 0, 0, 0] T

The stess-strain relations then become:

σ = D (ε− ε0)

In plane stress, we have:

ε0 =
[
[α∆T, α∆T, 0] T

]
In plane strain we have:

ε0 = (1 + v) [α∆T, α∆T, 0] T

Solution of this set of equations is generally referred to as an exact solu-

tion. Such exact solution are available for simple geometries and loading

conditions. For problems of complex geometries and general boundary and

loading conditions, obtaining such solutions is an almost impossible task.

Because of that, approximate solution method usually employ potential

energy methods or variational methods to solve the problem.

1.8 Potential Energy

The total potential energy of an elastic body, is de�ned as the sum of total

strain energy and the work potential which is given as:

Π = 1
2

´
V
σTε dV −

´
V

uTf dv −
´
S

uTT dS −
∑
i u

T
i Pi
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1.9 Variational Method

Variational Method or the weak form is derived from the Galerkin's method

which give:

´
V
σTε (φ) dV −

´
V
φTf dV −

´
S
φTT dS −

∑
i φ

TP = 0

where φ is an arbitrary displacement consistent with the speci�ed bound-

ary conditions of u. This equation is also known as Principle of Virtual

Work.

1.10 Von Mises Stress

Von Mises Stress is used as a criterion in determining the onset failure in

ductile materials. This criteria states that the Von Mises Stress should be

less than the yield stress of the material.

σVM ≤ σY

Where the von misses is given by

σVM =
√
I2
1 − 3I2

With I1 and I2 are the �rst two invariants of the stress tensor.

I1 = σx + σy + σz or I1 = σ1 + σ2 + σ3

I2 = σxσy + σyσz + σzσx − τ2
yz − τ2

xz − τ2
xy or I2 = σ1σ2 + σ2σ3 + σ3σ1

It can be expressed in an easier way by:

σVM = 1
2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2
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1.11 Matrix Algebra and Gaussian Elimination

1.11.1 Matrix Algebra

The study of matrices is largely motivated from the need to solve systems

of simultaneous equations of the form:

a11x1 + a12x2 + ...+ a1nxn = b1

a21x1 + a22x2 + ...+ a2nxn = b2

−−−−−−−−−−−−−−−−−−−

an1x1 + an2x2 + ...+ annxn = bn

where x1, x2, · · · , xnare the unknowns. Equation above can be conveniently

expressed in matrix form as

Ax = b

The analysis of engineering problems by the �nite element method involves

a sequence of matrix operations. Gaussian elimination will be applied to

solve these simultaneous equation. Before that, explanations about matrix

is expressed below.

1.11.2 Row and Column Vectors

A matrix of dimension (1× n) is called a row vector. For example:

d =
[

1 −1 3
]

A matrix of dimension (m× 1) is called a row vector. For example:

K =


2
4
−1


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1.11.3 Addition and Subtraction

Matrix A and B can be added or subtracted if both have the same dimen-

sion (m× n). The sum C = A + B is de�ned as

cij = aij + bij

Subtraction is similarly de�ned.

1.11.4 Multiplication by a Scalar

The multiplication of a matrix A by a scalar c is de�ned as

cA = [caij ]

1.11.5 Matrix Multiplication

The product of an (m× n) matrix A and an (n× p) matrix B results in an

(m× p) matrix C. It should be noted that AB 6= BA.

1.11.6 Transposition

Transpose of a matrix A = aijwill give . In general if AT = aij is of dimension

(m× n) , then AT is of dimension (n×m). For example:

A =


1 −5
0 6
−2 3
4 2

 then AT =

[
1 0 −2 4
−5 6 3 2

]

1.11.7 Diagonal Matrix

A diagonal matrix is a square matrix with nonzero elements only along

the principal diagonal. For example:

A =


2 0 0 0
0 −6 0 0
0 0 4 0
0 0 0 1


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1.11.8 Identity Matrix

The identity (or unit) matrix is a diagonal matrix with 1's along the prin-

cipal diagonal. For example:

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


1.11.9 Symmetric Matrix

A symmetric matrix is a square matrix whose elements satisfy

aij = aji or A = AT

1.11.10 Determinant of a Matrix

The determinant of a square matrix A denoted as det A. For example we

have a (3× 3) matrix, then

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a11 (a22a33 − a23a32)− a12 (a21a33 − a23a31) + a13 (a21a32 − a22a31)

1.11.11 Matrix Inversion

Consider a square matrix A. If det A 6=0, then A has an inverse, denoted

by A−1. The inverse satis�es the relations

A−1A = AA−1 = I

If det A 6= 0, then we say that A is nonsingular. If det A = 0, then we say

that A is singular, for which the inverse is not de�ned.
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1.12 Gaussian Elimination

Gaussian elimination is a method of solving simultaneous equations by

successively eliminating unknowns. Consider the simultaneous equations

below:

4x1 + 2x2 − 2x3 − 8x4 = 4

x1 + 2x2 + x3 = 2

0.5x1 − x2 + 4x3 + 4x4 = 10

−4x1 − 2x2 − x4 = 0

To �nd the value of x1, x2, x3and x4, Gaussian Elimination process can be

explained with
4 2 −2 −8 4
1 2 1 0 2

0.5 −1 4 4 10
−4 −2 0 −1 0

 −→


1 0.5 0.5 −2 1
0 1.5 1.5 2 1
0 −1.25 4.25 5 9.5
0 6 −2 −7 4

 −→


1 0.5 −0.5 −2 1
0 1 1 1.333 0.6667
0 0 5.5 0.6667 10.333
0 0 −2 −7 4

 −→


1 0.5 −0.5 −2 1
0 1 1 1.333 0.6667
0 0 1 1.2121 1.8788
0 0 0 −4.5758 7.7576


The solutions for the system are

x1 = 0.0794, x2 = −1.0066, x3 = 3.9338 and x1 = −1.6954

The problem above can be solve easier and faster by using Gauss Program

as shown below:

EQUATION SOLVING USING GAUSS ELIMINATION
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Number of Equations

4

Matrix A() in Ax = B

4 2 −2 −8 4
1 2 1 0 2

0.5 −1 4 4 10
−4 −2 0 −1 0

Right hand side B() in Ax = B

4 2 10 0

Results from Program Gauss

EQUATION SOLVING USING GAUSS ELIMINATION

Solution

1. 0.829493

2. -1.06912

3. 3.308756

4. -1.17972
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