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290 CHAPTER 6 BENDING

EXAMPLE

The simply supported beam in Fig. 6-26a has the cross-sectional area
shown in Fig. 6-26b. Determine the absolute maximum bending stress
in the beam and draw the stress distribution over the cross section at
this location.

L
‘ - J . ——x(m)

(a) (¢)
SOLUTION

Maximum Internal Moment. The maximum internal moment in
the beam, M = 22.5 kN - m, occurs at the center.

Section Property. By reasons of symmetry, the neutral axis passes
through the centroid C at the midheight of the beam, Fig. 6-26b. The
area is subdivided into the three parts shown, and the moment of
I inertia of each part is calculated about the neutral axis using the
Ly parallel-axis theorem. (See Eq. A-5 of Appendix A.) Choosing to
J work in meters, we have

b\

<250 mm

I =3I+ Ad%
(b)

\ 12.7 MPa

= 2[%2—(0.25 m)(0.020 m)® +(0.25 m)(0.020 m)(0.160 m)?

+ [é(o.ozo m)(0.300 m)ﬂ

Il

301.3(10 %) m*

Mc 22.5(10%) N+ m(0.170 m)
™ Ty 1 P T T g R0

, A A three-dimensional view of the stress distribution is shown in
12.7MPa Fig. 6-26d. Notice how the stress at points B and D on the cross

section develops a force that contributes a moment about the
neutral axis that has the same direction as M. Specifically, at point B,

= 12.7MPa Ans.

(d) yg = 150 mm, and so
Fig. 6-26 M 22.5(10°) N+ m(0.150 m
¢ op= 8, o Z2AONmOI0m) o,
I 301.3(10°) m

Tt -

o ® = Wwn
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6.4 THE FLEXURE FORMULA

EXAMPLE |

The beam shown in Fig. 6274 has a cross-sectional area in the shape 2.6 kN

of a channel, Fig. 6-27h. Determine the maximum bending stress that 15/,
occurs in the beam at section a-a. 3

SOLUTION

|
Internal Moment. Here the beam’s support reactions do not have L S | — L

to be determined. Instead, by the method of sections, the segment to the
left of section a—a can be used, Fig. 6-27c. In particular, note that
the resultant internal axial force N passes through the centroid of the ;
cross section. Also, realize that the resultant internal moment must be v = 59.09 mm| |2

calculated about the beam’s neutral axis at section a—a. N C
To find the location of the neutral axis, the cross-sectional area is {8 e
subdivided into three composite parts as shown in Fig. 6-27b. Using :

Eq.A-2 of Appendix A, we have

2yA  2[0.100 m](0.200 m)(0.015 m) + [0.010 m](0.02 m)(0.250 m)
SA 2(0.200 m)(0.015 m) + 0.020 m(0.250 m)
= 0.05909 m = 59.09 mm

y:

This dimension is shown in Fig. 6-27c. 24kN

Applying the moment equation of equilibrium about the neutral l 1L0kN 005909 m v
axis, we have e

M
¥ »Tj—»N
(+EZMyy  =0; 24KkN(2m) + 1.0KN(0.05909m) — M =0 L . c
M = 4859 kN-m
Section Property. The moment of inertia about the neutral axis is

p : : ; Fig. 6-27
determined using the parallel-axis theorem applied to each of the three %6
composite parts of the cross-sectional area. Working in meters, we have

= {%(0.250 m)(0.020 m)* + (0.250 m)(0.020 m)(0.05909 m — 0.010 m)z}

1
+ 2[5(0.015 m)(0.200 m)® + (0.015 m)(0.200 m)(0.100 m — 0.05909 m)z}
= 42.26(107%) m*

Maximum Bending Stress. The maximum bending stress occurs at
points farthest away from the neutral axis. This is at the bottom of the
beam,c¢ = 0.200 m — 0.05909 m = 0.1409 m. Thus,

_ Mc  4859(10°) N-m(0.1409 m)
e 42.26(10°5) m*
Show that at the top of the beam the bending stress is o’ = 6.79 MPa.

NOTE: The normal force of N = 1 kN and shear force V = 2.4 kN will
also contribute additional stress on the cross section. The superposition
of all these effects will be discussed in Chapter 8.

= 162 MPa Auns.
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7.2  THE SHEAR FORMULA 367

EXAMPLE B

The solid shaft and tube shown in Fig. 7-9a are subjected to the shear
force of 4 kN. Determine the shear stress acting over the diameter of
each cross section.

SOLUTION

Section Properties. Using the table on the inside front cover, the :

moment of inertia of each section, calculated about its diameter (or
neutral axis), is

1 1
Lsona = ch‘* = Zw(o.os m)* = 4.909(10%) m*

1 1 ,
Tibe = Z?T(cff —-ch= 77005 m)* — (0.02 m)*] = 4.783(10 %) m*

The semicircular area shown shaded in Fig. 7-9b, above (or below)
each diameter, represents Q, because this area is “held onto the member”
by the longitudinal shear stress along the diameter.

n 4e (mc®\  4(0.05 m) (77(0.05 m)2> sgitiis
N — ! ! = — — — = A 1 2
Osolid YA 3,".< ) > 3 2 i 33( 2 )m
= SpAr = g <7Tcg> . <7TC'2>
Qtube - b i 37 o) 3 2

- 4(0-:‘;2 m) (77(0-025 m)2> ~ 4(0.02m) <7T(0.022 m)2>

= 78.0(107%) m?

37

Shear Stress. Applying the shear formula where ¢+ = 0.1 m for the
solid section, and ¢ = 2(0.03 m) = 0.06 m for the tube, we have

_ VO 4(10°) N(83.33(10~°) m’)
Tsolid = Tr T T 4.909(10°%) m*(0.1 m)
VO  4(10°) N(78.0(10°) m’)
Twbe T T T 4.783(10%) m*(0.06 m)

= 679 kPa Ans.

= 1.09 MPa Ans.

NOTE: As discussed in the limitations for the shear formula, the
calculations performed here are valid since the shear stress along
the diameter is vertical and therefore tangent to the boundary of the
cross section. An element of material on the diameter is subjected to
“pure shear” as shown in Fig. 7-9b.

(a)




