Malaysian Journal of Analytical Sciences Vol 19 No 6 (2015): 1264 - 1273

 

 

 

THERMAL PERFORMANCE ANALYSIS OF STAGING EFFECT OF SOLAR THERMAL ABSORBER WITH CROSS DESIGN

 

(Analisis Prestasi Haba kepada Kesan Berperingkat Penyerap Haba Suria

dengan Reka Bentuk Bersilang)

 

Amir Abdul Razak1*, Zafri Azran Abdul Majid2, Mohd Hafidz Ruslan1, Kamaruzzaman Sopian1

 

1Solar Energy Research Institute (SERI),

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Kulliyyah of Allied Health Sciences,

International Islamic University Malaysia, 25200 Bandar Indera Mahkota, Kuantan, Pahang, Malaysia

 

*Corresponding author: amirrazak@outlook.com

 

 

Received: 9 March 2015; Accepted: 29 September 2015

 

 

Abstract

The type and shape of solar thermal absorber materials will impact on the operating temperature and thermal energy storage effect of a solar air thermal collector. For a standard flat-plate design, energy gain can be increased by expanding the thermal absorber area along the collector plane, subject to area limitation. This paper focuses on the staging effect of a metal hollow square rod absorber of aluminium, stainless steel, and a combination of the two with a cross design, for the heat gain and temperature characteristics of a solar air collector. Experiments were carried out with three cross design set-ups, with 30 minutes of heating and cooling, phase, respectively, under 485 W/m2 solar irradiance value, and at a constant air speed at 0.38 m/s. One-set aluminium set-up delivered the highest output temperature of 41.8 oC, followed by two-sets aluminium and one aluminium set + one stainless steel set at 39.3 oC and 38.2 oC, respectively. The lowest peak temperature is recorded on three sets of the aluminium absorber at 35 oC. The bi-metallic set-up performed better than the two aluminium set-up where each set-up obtained a temperature drop against heat gain gradient value of -0.4186 oC/W and -0.4917 oC/W, respectively. Results concluded that by increasing the number of sets, the volume and surface areas of the absorber material are also increased, and lead to a decrease in peak temperature output for each increase of sets.

 

Keywords: solar air heater, solar thermal absorber, cross design absorber

 

Abstrak

Jenis dan bentuk solar bahan penyerap haba akan memberi kesan kepada suhu operasi dan haba kesan penyimpanan tenaga udara pengumpul haba suria. Untuk standard reka bentuk plat rata, penghasilan tenaga boleh ditingkatkan dengan memperluaskan kawasan penyerap haba di sepanjang satah pengumpul tetapi tertakluk kepada had kawasan. Makalah ini memberi tumpuan kepada kesan bertingkat logam berongga penyerap rod persegi aluminium, keluli tahan karat dan gabungan kedua-duanya dengan reka bentuk silang kepada peningkatan haba dan ciri-ciri suhu pemanas udara suria. Eksperimen dilakukan dengan tiga jenis reka bentuk silang dengan 30 minit pemanasan dan penyejukan fasa masing-masing pada 485 W/m2 nilai sinaran suria dan pada kadar halaju udara berterusan 0.38 m/s. One-set aluminium set-up delivered the highest output temperature of 41.8 oC, followed by two-sets aluminium and one aluminium set + one stainless steel set at 39.3 oC and 38.2 oC, respectively. The lowest peak temperature is recorded on three sets of the aluminium absorber at 35 oC. Satu set aluminium mencapai suhu output tertinggi pada 41.8 oC, diikuti dengan dua set aluminium dan satu set aluminium + satu keluli tahan karat dengan masing-masing mencapai suhu 39.3 oC dan 38.2 oC. Suhu puncak terendah direkodkan pada tiga set penyerap aluminium pada 35 oC. Set dwi-logam menunjukkan prestasi yang lebih baik daripada dua set persediaan aluminium di mana setiap set mencapai penurunan suhu terhadap nilai peningkatan haba dengan petunjuk aras kecerunan masing-masing pada -0.4186 oC/W dan -0.4917 oC/W. Melalui hasil kajian, kesimpulan dibuat bahawa dengan meningkatkan bilangan set, jumlah dan permukaan bidang bahan penyerap juga meningkat dan menyebabkan pengurangan suhu output dan suhu puncak bagi setiap peningkatan set.

 

Kata kunci: pemanas udara suria, penyerap haba suria, penyerap reka bentuk silang

 

References

1.       Duffie, J. A. and Beckman, W. A. (1980). Solar Engineering of Thermal Processes-Second Edition. John Wiley & Sons, Inc.

2.       Majid, Z. A. A. (2011). Kajian prestasi sistem pengering pam haba terbantu suria dengan pengumpul suria multifungsi. Universiti Kebangsaan Malaysia, Bangi.

3.       Majid, Z. A. A., Razak, A. A., Ruslan, M. H. and Sopian, K. (2014). Characteristics of solar thermal absorber materials in cross absorber with combined material for solar air thermal collector. International Conference on Automotive Innovation and Green Energy Vehicle 2014 1–10.

4.       Azmi, M. S. M., Othman, M. Y. H., Ruslan, M. H. H. and Majid, Z. A. A. (2013). Thermal performance of solar collector with multi direction properties using cross absorber. In 2012 National Physics Conference AIP Conf. Proc. 1528( 117): 113–117

5.       Majid, Z. A. A., Othman, M. Y., Ruslan, M. H., Mat, S., Ali, B., Zaharim, A., and Sopian, K. (2008). Multifunctional Solar Thermal Collector for Heat Pump Application. In Proceedings of the 3rd WSEAS Int. Conf. on Renewable Energy Sources. 342–346.

6.       Shariah, A. M., Rousan, A., Rousan, K. K. and Ahmad, A. A. (1999). Effect of thermal conductivity of absorber plate on the performance of a solar water heater. Applied Thermal Engineering 19: 733–741

7.       Kalogirou, S. A. (2013). Solar Energy Engineering (Second Edition), Processes and Systems. Elsevier, Academic Press.

8.       Akpinar, E. K. and Koçyiğit, F. (2010). Experimental investigation of thermal performance of solar air heater having different obstacles on absorber plates. International Communications in Heat and Mass Transfer 37(4): 416–421.

9.       Alvarez, G., Arce, J., Lira, L. and Heras, M. R. (2004). Thermal performance of an air solar collector with an absorber plate made of recyclable aluminium cans. Solar Energy 77(1): 107–113.

10.    Benli, H. (2013). Experimentally derived efficiency and exergy analysis of a new solar air heater having different surface shapes. Renewable Energy 50: 58–67.

11.    Bouadila, S., Kooli, S., Lazaar, M., Skouri, S. and Farhat, A. (2013). Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Applied Energy 110: 267–275.

12.    Chiou, J. P., El-Wakil, M. M. and Duffie, J. (1965). A slit-and-expanded aluminium foil matrix solar collector. Solar Energy, 9(2): 73–80.

13.    Bagdade, S. D. (2002). ASM Ready Reference: Thermal Properties of Metals (Materials Data Series). ASM International.

14.    Salazar, A. (2003). On Thermal Diffusivity. European Journal of Physics, 24 (4): 351 - 358.

15.    Çengel, Y. A., Turner, R. H. and Cimbala, J. (2011). Fundamental of Thermal-fluid Sciences (4th ed.). McGraw-Hill.

 




Previous                    Content                    Next