Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 51 -  63

 

 

 

NEW METHYLTRIMETHOXYSILANE-(3-MERCAPTOPROPYL)-TRIMETHOXYSILANE COATED HOLLOW FIBER-SOLID PHASE MICROEXTRACTION FOR HEXANAL AND HEPTANAL ANALYSIS

 

(Pengekstrakan Mikro Fasa Pepejal-Gentian Berongga Tersalut Metiltrimetoksisilana-

(3-merkaptopropil)trimetoksisilana Baharu bagi  Analisis Heksanal dan Heptanal)

 

Siti Munirah Abd Wahib1, Wan Aini Wan Ibrahim1,2*, Mohd Marsin Sanagi3

 

1Separation Science and Technology Group (SepSTec), Department of Chemistry, Faculty of Science

2Frontier Materials Research Alliance

3Ibnu Sina Institute for Scientific and Industrial Research

Universiti Teknologi Malaysia,  81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author: wanaini@kimia.fs.utm.my; waini@utm.my

 

 

Received: 9 December 2014; Accepted: 16 October 2015

 

 

Abstract

Determination of volatile organic compounds (VOCs) in various matrices is often accomplished using solid phase microextraction (SPME) as a superior mode of extraction. Alternatively, another configuration of solid phase microextraction (SPME) namely hollow fiber-solid phase microextraction (HF-SPME) is a great approach to redress some limitations of the ordinary SPME fibers including fiber breakage, coating stripping and sample carry over. The HF-SPME technique highlights the use of hollow polypropylene (PP) membrane to hold and protect the adsorbent inside its lumen. Unlike the conventional SPME, the inexpensive HF device can be disposed after single use. Introducing extracting phase via sol-gel technology has gained great interest owing to its simple preparation method and promising way to obtain materials with good characteristics. In the present work, a new hybrid silica material based on methyltrimethoxysilane-(3-mercaptopropyl)trimethoxysilane (MTMOS-MPTMOS) was introduced as a new extractant of HF-SPME and the effectiveness of the proposed method was tested for analysis of hexanal and heptanal as the target VOC analytes. Preparation of the HF-SPME MTMOS-MPTMOS was simple in which the hybrid material was synthesized via sol-gel method and was self-polymerized in small segments of HF. Parameters affecting the efficiency of the HF-SPME MTMOS-MPTMOS in extracting both aldehydes were thoroughly investigated and analyzed by gas chromatography-flame ionization detection (GC-FID). It was found that the highest efficiency was achieved as the extraction was conducted in 30 min at a stirring rate of 1000 rpm in a 10 mL of sample solution whereby the back-extraction was performed via vortex for 3 min using 100 µL methanol as desorption solvent. Under the optimal conditions, linearity was observed over a range of 0.020-10.00 µg mL-1 with detection limits of 0.015 µg mL-1 and 0.010 µg mL-1 for hexanal and heptanal, respectively. The applicability of the HF-SPME MTMOS-MPTMOS for analysis of hexanal and heptanal in human urine sample was proven from the quantitative recoveries (> 90%) achieved. The HF-SPME MTMOS-MPTMOS offers an attractive alternative for rapid and convenient extraction tool and showed good potential for analysis of hexanal and heptanal from aqueous samples.

 

Keywords:  hollow fiber-solid phase microextraction, sol-gel hybrid, methyltrimethoxysilane, (3-mercaptopropyl)tri-methoxysilane,  hexanal, heptanal

 

Abstrak

Penentuan sebatian organik meruap (VOC) dalam pelbagai matriks sering dicapai dengan pengekstrakan mikro fasa pepejal (SPME) sebagai mod unggul pengekstrakan. Sebagai alternatif, pengekstrakan mikro fasa pepejal-gentian berongga (HF-SPME) adalah pendekatan yang baik untuk mengatasi kekangan gentian SPME biasa termasuk kerapuhan gentian, salutan tertanggal dan baki sampel suntikan tertinggal. Teknik HF-SPME mengetengahkan penggunaan membran polipropilena (PP) berongga untuk memegang dan melindungi fasa pengekstrak dalam lumen HF. Tidak seperti konvensional SPME, alat HF yang murah boleh dibuang selepas sekali penggunaan. Menghasilkan fasa pengekstrak melalui teknologi sol-gel telah mendapat perhatian luas kerana kaedah penyediaan yang mudah dan cara yang memberangsangkan untuk menghasilkan bahan dengan ciri-ciri yang baik. Dalam kajian semasa, bahan silika hibrid baharu berdasarkan metiltrimetoksisilana-(3-merkaptopropil)trimetoksisilana (MTMOS-MPTMOS) telah diperkenalkan sebagai bahan penjerap baharu HF-SPME dan keberkesanan kaedah yang dicadangkan telah diuji terhadap analisis heksanal dan heptanal sebagai analit VOC sasaran. Penyediaan HF-SPME MTMOS-MPTMOS adalah mudah yang mana bahan hibrid ini telah disintesis menggunakan kaedah sol-gel dan telah diswapolimer di dalam segmen kecil HF. Parameter yang mempengaruhi kecekapan HF-SPME MTMOS-MPTMOS dalam mengekstrak kedua-dua aldehid telah dikaji dengan teliti dan dianalisis menggunakan kromatografi gas-pengesan pengionan nyala (GC-FID). Kecekapan tertinggi telah dicapai apabila pengekstrakan dijalankan selama 30 min pada kadar kacauan 1000 rpm di dalam 10 mL larutan sampel yang mana pengekstrakan-kembali dilakukan melalui vorteks selama 3 min menggunakan 100 µL metanol sebagai pelarut penyahjerapan. Pada keadaan optimum, julat linear ialah 0.020-10.00 µg mL-1 dengan had pengesanan bagi heksanal dan heptanal masing-masing ialah 0.015 µg mL-1 and 0.010 µg mL-1. Kesesuaian HF-SPME MTMOS-MPTMOS untuk analisis heksanal dan heptanal dalam sampel air kencing manusia terbukti dengan perolehan kuantitatif yang dicapai (> 90%). HF-SPME MTMOS-MPTMOS menawarkan alternatif menarik sebagai alat pengekstrakan yang cepat dan mudah serta menunjukkan potensi yang baik untuk analisis heksanal dan heptanal daripada sampel akueus.

 

Kata kunci:      pengekstrakan mikro fasa pepejal-gentian berongga, hibrid sol-gel, metiltrimetoksisilana, (3-merkaptopropil)-trimetoksisilana, heksanal, heptanal

 

References

1.       Fathy Bakr Ali, M., Kishikawa, N., Ohyama, K., Mohamed, H. A-M., Abdel-Wadood, H. M., Mohamed, A. M. and Kuroda, N. (2013). Chromatographic determination of aliphatic aldehydes in human serum after pre-column derivatization using 2,2’-furil, a novel fluorogenic reagent. Journal of Chromatography  A, 1300: 199 –203.

2.       Li, N., Denga, C., Yao, N., Xizhong Shen, X. and Zhang, X. (2005). Determination of Acetone, Hexanal and Heptanal in Blood Samples by Derivatization with Pentafluorobenzyl Hydroxylamine Followed by Headspace Single-drop Microextraction and Gas Chromatography Mass Spectrometry. Analytica Chimica Acta, 540: 317 – 323.

3.       Deng, C, Zhang, X. and Li, N. (2004). Investigation of Volatile Biomarkers in Lung Cancer Blood using Solid-Phase Microextraction and Capillary Gas Chromatography-Mass Spectrometry Journal of Chromatography B, 808: 269 – 277.

4.       Deng, C., Li, N. and Zhang, X. (2004). Development of Headspace Solid-Phase Microextraction with On-Fiber Derivatization for Determination of Hexanal and Heptanal in Human Blood. Journal of Chromatography B, 813: 47 – 52.

5.       Poli D, Goldoni M, Corradi M. Acampa, O., Carbognani, P., Internullo, E., Casalini, A. and Mutti, A. (2010). Determination of Aldehydes in Exhaled Breath of Patients with Lung Cancer By Means of On-Fiber Derivatization SPME-GC/MS. Journal of Chromatography B, 878: 2643 – 2651.

6.       Guadagni, R., Miraglia, N., Simonelli, A., Silvestre, A., Lamberti, M., Feola, D., Acampora, A. and Sannolo, N. (2011). Solid-phase Microextraction-Gas Chromatography-Mass Spectrometry Method Validation for the Determination of Endogenous Substances: Urinary Hexanal and Heptanal as Lung Tumor Biomarkers. Analytica Chimica Acta, 701: 29 –36.

7.       Sarafraz-Yazdi, A. Dizavandi, Z. R. and Amiri, A. (2012). Determination of phenolic compounds in water and urine samples using solid-phase microextraction based on sol-gel technique prior to GC-FID. Analytical Methods, 4: 4316 – 4325.

8.       Sarafraz-Yazdi, A., Ghaemi, F., and Amiri, A. (2012). Comparative Study of the Sol-Gel Based Solid Phase Microextraction Fibers in Extraction of Naphthalene, Fluorene, Anthracene and Phenanthrene from Saffron Samples Extractants. Microchimica Acta, 176: 317 – 325.

9.       Xu, H., Wang, S., Zhang, G., Huang, S., Song, D., Zhou, Y. and Long, G. (2011). A Novel Solid-Phase Microextraction Method Based on Polymer Monolith Frit Combining with High-Performance Liquid Chromatography for Determination of Aldehydes in Biological Samples. Analytica Chimica Acta, 690: 86 – 93.

10.    Song, D., Gu, Y., Liang, L., Ai, Z., Zhang, L., and Xu, H. (2011). Magnetic Solid-Phase Extraction Followed by High Performance Liquid Chromatography for Determination of Hexanal and Heptanal in Human Urine. Analytical Methods, 3: 1418 –1423.

11.    Mieth, M., Kischkel, S., Schubert, J. K., Hein, D. and Miekisch, W. (2009). Multibed Needle Trap Devices for On Site Sampling and Preconcentration of Volatile Breath Biomarkers. Analytical Chemistry, 81: 5851 5857.

12.    Wan Ibrahim, W. A., Farhani, H., Sanagi, M. M., and Aboul-Enein, H. Y. (2010). Solid Phase Microextraction using New Sol-Gel Hybrid Polydimethylsiloxane-2 Hydroxymethyl-18-Crown-6-Coated Fiber for Determination of Organophosphorous Pesticides. Journal of Chromatography A, 1217: 4890 – 4897.

13.    Wan Ibrahim, W. A., Wan Ismail, W. N., Abdul Keyon, A. S. and Sanagi, M. M. (2011). Preparation and Characterization of a New Sol-Gel Hybrid Based Tetraethoxysilane Polydimethylsiloxane as a Stir Bar Extraction Sorbent Materials. Journal of Sol-Gel Science and Technology, 58: 602 – 611.  

14.    Zheng, Y., Wang, D. and Tian, J. (2012). Preparation and Application of Multiwalled Carbon Nanotubes Microspheres/Poly(ethylene glycol) Coated Fiber for SPME. Advanced Materials Research, 512-513: 2084 – 2087.

15.    Wan Ibrahim W. A, Veloo, K. V. and Sanagi, M. M. (2012). Novel Sol-Gel Hybrid Methyltrimethoxysilane-Tetramethoxysilane as Solid Phase Extraction Sorbent of Organophosphorus Pesticides, Journal of Chromatography A, 1229: 55 – 62.

16.    Gao, Z., Deng, Y., Hu, X., Yang, S., Sun, C. and He, H. (2013). Determination of Organophosphate Esters in Water Samples Using An Ionic Liquid-Based Sol-Gel Fiber for Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Flame Photometric Detector.  Journal of Chromatography A, 1300: 141 –150.

17.    Mu, Li., Hu, X., Weng, J. and Zhou, Q. (2013). Robust Aptamer Sol-Gel Solid Phase Microextraction of Very Polar Adenosine from Human Plasma. Journal of Chromatography A, 1279: 7 –12.

18.    Zhou, Z. P., Wang, Z. Y., Wu, C. Y., Zhan, W. and Xu, Y. (1999). Sol-Gel Method for the Preparation of Solid-Phase Microextraction Fibers. Analytical Letter, 32: 1675 –1681.

19.    Spietelun, A., Marcinkowski, Ł., de la Guardia, M. and Namieśnik, J. (2013). Recent Developments and Future Trends in Solid Phase Microextraction Techniques Towards Green Analytical Chemistry. Journal of Chromatography A, 1321:1 – 13.

20.    Es’haghi, Z., Orayaei, H., Samadi, F., Masrournia, M. and Bakherad, Z. (2011). Fabrication of A Novel Nanocomposite Based on Sol-Gel Process for Hollow Fiber-Solid Phase Microextraction of Aflatoxins: B1 and B2, in Cereals Combined with High Performance Liquid Chromatography-Diode Array Detection. Journal of Chromatography B, 879: 3034 – 3040.

21.    Es’haghi, Z., Rezaeifar, Z., Rounaghi, G-H., Nezhadi, Z. A., and Golsefidi, M. A. (2011). Synthesis and Application of A Novel Solid-Phase Microextraction Adsorbent: Hollow Fiber Supported Carbon Nanotube Reinforced Sol-Gel for Determination of Phenobarbital. Analytica Chimica Acta, 689: 122 –128.

22.    Ebrahimi, M., Es’haghi, Z., Samadi, F. and Hosseini, M-S. (2011). Ionic Liquid Mediated Sol-Gel Sorbents for Hollow Fiber Solid-Phase Microextraction of Pesticide Residues in Water and Hair Samples. Journal of Chromatography A, 1218: 8313 – 8321.

23.    Ebrahimi, M., Es’haghi, Z., Samadi, F. and Hosseini, M-S. (2012). Rational Design of Heteropolyacid-Based Nanosorbent for Hollow Fiber Solid Phase Microextraction of Organophosphorus Residues in Hair Samples. Journal of Chromatography A, 1225: 37 – 44.

24.    Song, X-Y, Shi, Y-P and Chen, J (2012). A Novel Extraction Technique Based on Carbon Nanotubes Reinforced Hollow Fiber Solid/Liquid Microextraction for the Measurement of Piroxicam and Diclofenac Combined with High Performance Liquid Chromatography. Talanta, 100: 153 – 161.

25.    Yang, Y., Chen, J. and Shi, Y-P. (2012). Determination of Diethylstilbestrol in Milk Using Carbon Nanotube-Reinforced Hollow Fiber Solid-Phase Microextraction Combined with High-Performance Liquid Chromatography. Talanta, 97: 222 – 228.

26.    Li, J., Wang, Y-B., Wu, L., Li, K-Y. and Feng, W. (2014). Fabrication of Multi-Walled Carbon Nanotubes/Oxide Reinforced Hollow Fibers by Sol-Gel Technique for Rapid Determination of Metronidazole in Milk. Analytical Methods, 6: 1404 –1411.

27.    Su, S., Chen, B., He, M. and Hu, B. (2014). Graphene Oxide-Silica Composite Coating Hollow Fiber Solid Phase Microextraction Online Coupled with Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Heavy Metals in Environmental Water Samples. Talanta, 123: 1 – 9.

28.    Bagheri, H., Piri-Moghadam, H. and Ahdi, T. (2012). Role of Precursors and Coating Polymers in Sol-Gel Chemistry toward Enhanced Selectivity and Efficiency in Solid Phase Microextraction. Analytica Chimica Acta, 742: 45 – 53.

29.    Azenha, M., Malheiro, C. and Silva, A. F. (2005). Ultrathin Phenyl-Functionalized Solid Phase Microextraction Fiber Coating Developed by Sol-Gel Deposition. Journal of Chromatography A, 1069: 163 –172.

30.    Mandal, B and Basu, B. (2014). Recent advances in S–S bond formation. RSC Advances, 4: 13854 – 13881.

31.    Kabir, A., Furton, K.G. and Malik, A. (2013). Innovations in Sol-Gel Microextraction Phases for Solvent-Free Sample Preparation in Analytical Chemistry. Trends in Analytical Chemistry, 45: 197 –218.

32.    Kumar, A., Gaurav, Malik, A. K., Tewary, D. K. and Singh, B. (2008). A Review on Development of Solid Phase Microextraction Fibers by Sol-Gel Methods and Their Applications. Analytica Chimica Acta. 610: 1 –14.

33.    Chen, G., Li, W., Zhang, C., Zhou, C. and Feng, S. (2012).  Preparation of a Novel Hyperbranched Carbosilane-Silica Hybrid Coating for Trace Amount Detection by Solid Phase Microextraction/Gas Chromatography. Journal of Chromatography A, 1256 : 213 – 221.

34.    McDonagh, C., Bowe, P., Mongey, K. and MacCraith, B.D. (2002). Characterisation of Porosity and Sensor Response Times of Sol-Gel-Derived Thin Films for Oxygen Sensor Applications. Journal of Non-Crystalline Solids, 306: 138 –148.




Previous                    Content                    Next