Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 324 - 328

 

 

 

EFFECT OF PALM OIL FIBER-TiO2 RATIO IN THE COMPOSITE ON THE REDUCTION OF BTX AND FORMALDEHYDE IN THE AIR

 

(Kesan Nisbah Serat Kelapa Sawit-TiO2 dalam Komposit bagi Pengurangan Kandungan BTX dan Formaldehid di Udara)

 

Nor Rahafza Abdul Manap1, Roslinda Shamsudin1*, Mohd Norhafsam Maghpor2,

Muhammad Azmi Abdul Hamid1, Azman Jalar1

 

1School of Applied Physics, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2National Institute of Occupational Safety and Health

 Lot 1, Jalan 15/1, Seksyen 15, 46500 Bandar Baru Bangi, Selangor, Malaysia

 

*Corresponding author: linda@ukm.edu.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

The effect of palm oil fiber-TiO2 ratio in the composite on the reduction of benzene, toluene, xylene and formaldehyde in the air is studied. The ratio was set at 1:0, 1:9 and 5:5. The combination of adsorption process by palm oil fiber and photooxidation of volatile organic compounds by titanium dioxide was revealed. The composite were prepared by using mechanical milling technique. The performance of the composite was characterized in terms of percentage of recovery of benzene, toluene and xylene (BTX) using GC/FID and formaldehyde concentration reduction using formaldehyde meter. The results of recovery of the BTX by palm oil fiber/titanium dioxide composite were more than 90%. The palm oil fiber/titanium dioxide composite has successfully reduced the concentration of formaldehyde by up to 66.7%.  Therefore, the palm oil mesocarp fiber/titanium dioxide composite produced is able to reduce the concentration of volatile organic compounds.

 

Keywords:    mesocarp fiber, palm oil fiber, titanium dioxide, photocatalyst, photo oxidation, volatile organic compunds

 

Abstrak

Kesan nisbah serat kelapa sawit-titanium dioksida dalam komposit bagi pengurangan kandungan BTX dan formaldihid dalam udara telah dikaji. Nisbah telah ditetapkan sebagai 1:0, 1:9 dan 5:5. Kombinasi proses penjerapan oleh serat kelapa sawit dan proses oksidasi cahaya sebatian organik meruap oleh titanium dioksida telah dijelaskan. Serbuk komposit serat kelapa sawit-titanium dioksida telah disediakan menggunakan kaedah kisaran mekanikal untuk mendapatkan serbuk komposit. Prestasi komposit telah diuji dari segi nilai peratusan ujian pemulihan benzena, toluena dan xilena (BTX) menggunakan kromatografi gas dengan pengesan pengionan api (GC/FID) dan peratusan pengurangan kepekatan formaldehid menggunakan meter formaldehid. Nilai peratusan ujian pemulihan BTX yang diberikan oleh serbuk komposit melebihi 90%. Serbuk komposit dari serat kelapa sawit dan titanium dioksida telah berjaya mengurangkan kepekatan formaldehid sebanyak 66.7%. Oleh itu, komposit yang dihasilkan dari serat kelapa sawit dan TiO2 boleh mengurangkan  kepekatan sebatian organic meruap dalam udara.

 

Kata kunci:    serat mesokap kelapa sawit, serat kelapa sawit, titanium dioksida, pemangkin cahaya, sebatian organik meruap

 

References

1.       Katsoyiannis, A., Leva, P. and Kotzias, D., (2008). VOC and carbonyl emissions from carpets : A comparative study using four types of environmental chambers. Journal of Hazardous Materials, 152: 669–676.

2.       Chang, C.T. and Chen, B.Y. (2008). Toxicity assessment of volatile organic compounds and polycyclic aromatic hydrocarbons in motorcycle exhaust. Journal of Hazardous Materials, 153: 1262–1269.

3.       Wolkoff, P. and Nielsen, G. D. (2010). Non-cancer effects of formaldehyde and relevance for setting an indoor air guideline. Environmental International, 36 (7): 788–799.

4.       Pala, M., Ugolini, D., Ceppi, M., Rizzo, F., Maiorana, L., Bolognesi, C., Schilirò, T., Gilli, G., Bigatti, P., Bono, R. and Vecchio, D. (2008). Occupational exposure to formaldehyde and biological monitoring of Research Institute workers. Cancer Detection and Prevention, 32 (2): 121– 126.

5.       Chen, J. and Poon, C. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Building and Environment, 44 (9): 1899 – 1906.

6.       Sanjuán-herráez, D., De Osa, S., Pastor, A. and De Guardia, M. (2014). Air monitoring of selected volatile organic compounds in wineries using passive sampling and headspace-gas chromatography – mass spectrometry. Microchemical Journal, 114: 42–47.

7.       Zaitan, H., Korrir, A., Chafik, T. and Bianchi, D. (2013). Evaluation of the potential of volatile organic compound (di-methyl benzene) removal using adsorption on natural minerals compared to commercial oxides. Journal of Hazardous Materials, 262: 365–376.

8.       Ewlad-Ahmed, A. M., Morris, M. A., Patwardhan, S. V. and Gibson, L. T. (2012). Removal of formaldehyde from air using functionalized silica supports. Environmental Science and Technology, 46: 13354 – 13360.

9.       Yu, Q. L. and Brouwers, H. J. H. (2009). Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study.  Applied Catalysis B: Environmental, 92(3–4):  454 – 461.

10.    Zhao, J. and Yang, X. (2003). Photocatalytic oxidation for indoor air purification: A literature review. Building and Environment, 38 (5): 645 – 654.

11.    Maira, A. J., Yeung, K. L., Lee, C. Y., Yue, P. L. and Chan, C. K. (2000). Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts. Journal of Catalysis, 192 (1): 185 – 196.

12.    Tseng, J. Y., Chang, C. Y., Chang, C. F., Chen, Y. H., Chang, C. C., Ji, D. R., Chiu, C. Y. and Chiang, P. C. (2009). Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent. Journal of Hazardous Materials, 171 (1–3): 370 – 377.

13.    Thammakhet, C. and Muneesawang, V. (2006). Cost effective passive sampling device for volatile organic compounds monitoring. Atmospheric Environment 40: 4589 – 4596.

14.    Ciabini, L., Santoro, M., Gorelli, F. A., Bini, R., Schettino, V. and Raugei, S. (2007). Triggering dynamics of the high-pressure benzene amorphization. Nature Materials, 6: 39 – 43.

15.    Quiroz Torres, J., Royer, S.,  Bellat, J. P., Giraudon, J. M. and Lamonier, J.-F. (2013). Formaldehyde: catalytic oxidation as a promising soft way of elimination. ChemSusChem, 6 (4): 578 – 592.

16.    Li, F. B., Li, X. Z., Ao, C. H., Lee, S. C. and Hou, M. F. (2005). Enhanced photocatalytic degradation of VOCs using Ln3+-TiO2 catalysts for indoor air purification. Chemosphere, 59 (6): 787 – 800.

 




Previous                    Content                    Next