Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 373 - 381

 

 

 

ELECTROCHEMICAL SYNTHESIS OF ORDERED TITANIA NANOTUBES IN MIXTURE OF ETHYLENE GLYCOL AND GLYCEROL ELECTROLYTE

 

(Sintesis Nanotiub Titania Bertertib Secara Elektrokimia dalam Campuran Elektrolit Etilena Glikol dan Gliserol)

 

Lim Ying Chin1*, Zulkarnain Zainal2, 3, Zuraida Khusaimi1, Siti Sarah Ismail1

 

1School of Chemistry and Environment, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Department of Chemistry, Faculty of Science

3Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA)

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: limyi613@salam.uitm.edu.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

The electrolyte chemistry (nature and its composition) plays a critical role in determining the nanotube architecture and its growth process. In the present study, the formation of well-ordered titania nanotubes (TNT) is achieved by electrochemical anodization of titanium substrate in aqueous ethylene glycol-glycerol electrolyte (EG/Gly). The resulted samples were characterized using X-ray Diffraction (XRD) and the morphology changes were monitored by Field Emission Scanning Electron Microscopy (FESEM). Compositional changes of the titania nanotubes (TNT) were determined using Energy Dispersive X-ray Spectroscopy (EDX). The influence of anodization voltage, volume ratio of electrolyte and NH4F content on the morphology and geometry of titania nanotubes have been investigated. The nature of electrolytes influenced the ordering and uniformity of nanotubes. In addition, nanotubes with various diameters ranging from 62 – 112 nm and lengths of 1.1 – 1.3 μm were obtained by controlling the anodization voltage and volume ratio of EG/Gly. Ultimately, anodization of Ti at 20 V in 1:1 volume ratio of EG/Gly containing 0.25 – 1.0 wt.% NH4F appears to be an optimum condition for controlling the ordering of nanotubes.

 

Keywords: titania, nanotube, anodization, glycerol, ethylene glycol

 

Abstrak

Kimia elektrolit (sifat dan komposisinya) memainkan peranan kritikal dalam menentukan senibina nanotiub dan proses pertumbuhannya. Dalam kajian ini, pembentukan nanotiub titania (TNT) tertertib rapi boleh dicapai melalui penganodan subtrat titanium secara elektrokimia dalam larutan akueus etilena glikol-gliserol (EG/Gly). Pencirian sampel dilakukan menggunakan pembelauan sinar-X (XRD) dan perubahan morfologi pula diawasi menggunakan mikroskopi pengimbasan elektron pancaran medan (FESEM). Perubahan komposisi nanotiub titania ditentukan dengan penyerakan tenaga sinar-X (EDX). Kesan voltan penganodan, nisbah isipadu elektrolit dan kandungan NH4F ke atas morfologi dan geometri nanotiub titania telah dikaji. Sifat elektrolit mempengaruhi penertiban dan keseragaman nanotiub. Tambahan pula, pelbagai diameter nanotiub berukuran dari 62 – 112 nm dan 1.1 – 1.3 mm panjang dapat dicapai melalui pengawalan voltan penganodan dan nisbah isipadu EG/Gly. Penganodan Ti pada 20V dalam nisbah isipadu 1:1 EG/Gly yang mengandungi 0.25 – 1.0 wt.% NH4F merupakan keadaan optimum dalam pengawalan penertiban nanotiub.

 

Kata kunci: titania, nanotiub, penganodan gliserol, etilena glikol

 

References

1.       Malengreaux, C. M., Léonard, G. M. L., Pirard, S. L., Cimieri, I., Lambert, S. D., Bartlett, J. R. and Heinrichs, B. (2014). How to modify the photocatalytic activity of TiO2 thin films through their roughness by using additives. A relation between kinetics, morphology and synthesis. Chemical Engineering Journal, 243: 537 – 548.

2.       Hou, Y., Li, X., Zhao, Q., Quan, X. and Chen, G. (2010). Electrochemically assisted photocatalytic degradation of 4-chlorophenol by ZnFe2O4− modified TiO2 nanotube array electrode under visible light irradiation. Environmental Science & Technology, 44 (13): 5098 – 5103.

3.       Li, Y., Ma, Q., Han, J., Ji, L., Wang, J., Chen, J. and Wang, Y. (2014). Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays. Applied Surface Science, 297: 103 – 108.

4.       Tekin, D. (2014). Photocatalytic degradation of textile dyestuffs using TiO2 nanotubes prepared by sonoelectrochemical method. Applied Surface Science, 318: 132 – 136.

5.       Kumar, S. G. and Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry A, 115 (46): 13211 – 13241.

6.       Erol, M., Dikici, T., Toparli, M. and Celik, E. (2014). The effect of anodization parameters on the formation of nanoporous TiO2 layers and their photocatalytic activities. Journal of Alloys and Compounds, 604: 66 – 72.

7.       Zhang, Y., Yu, D., Gao, M., Li, D., Song, Y., Jin, R., Ma, W. and Zhu, X. (2015). Growth of anodic TiO2 nanotubes in mixed electrolytes and novel method to extend nanotube diameter. Electrochimica Acta, 160: 33 – 42.

8.       Nishanthi, S. T., Subramanian, E., Sundarakannan, B. and Padiyan, D. P. (2015). An insight into the influence of morphology on the photoelectrochemical activity of TiO2 nanotube arrays. Solar Energy Materials and Solar Cells, 132: 204 – 209.

9.       Komiya, S., Sakamoto, K. and Ohtsu, N. (2014). Structural changes of anodic layer on titanium in sulfate solution as a function of anodization duration in constant current mode. Applied Surface Science, 296: 163 –168.

10.    Sánchez-Tovar, R., Lee, K., García-Antón, J. and Schmuki, P. (2013). Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions. Electrochemistry Communications, 26: 1 – 4

11.    Yao, B. D., Chan, Y. F., Zhang, X. Y., Zhang, W. F., Yang, Z. Y. and Wang, N. (2003). Formation mechanism of TiO2 nanotubes. Applied Physics Letters, 82 (2): 281 – 283.

12.    Xue, Y., Sun, Y., Wang, G., Yan, K. and Zhao, J. (2015). Effect of NH4F concentration and controlled-charge consumption on the photocatalytic hydrogen generation of TiO2 nanotube arrays. Electrochimica Acta155: 312 – 320.

13.    Liang, Y. Q., Cui, Z. D., Zhu, S. L. and Yang, X. J. (2011). Study on the formation micromechanism of TiO2 nanotubes on pure titanium and the role of fluoride ions in electrolyte solutions. Thin Solid Films519 (15): 5150 – 5155.

14.    Ku, Y., Chen, Y. S., Hou, W. M. and Chou, Y. C. (2012). Effect of NH4F concentration in electrolyte on the fabrication of TiO2 nanotube arrays prepared by anodisation. Micro & Nano Letters7 (9): 939 –942.

 




Previous                    Content                    Next