Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 258 - 271

 

 

 

REMOVAL OF MALACHITE GREEN DYE FROM AQUEOUS SOLUTION USING MULTI-WALLED CARBON NANOTUBES: AN APPLICATION

OF EXPERIMENTAL DESIGN

 

(Penyingkiran Malakit Hijau daripada Larutan Akues Menggunakan Karbon Tiub Nano: Aplikasi Reka Bentuk Eksperimen)

 

Siti Aminah Zulkepli1, Md Pauzi Abdullah1, 2*, Wan Mohd Afiq Wan Mohd Khalik1

 

1School of Chemical Sciences and Food Technology

2Centre for Water Research and Analysis (ALIR)

 Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: mpauzi@ukm.edu.my

 

 

Received: 11 January 2016; Accepted: 10 March 2016

 

 

Abstract

An experimental design methodology was performed in the optimization of removal of malachite green dye by multi-walled carbon nanotubes. A Central Composite Design (25) was chosen to develop a mathematical model and determine the optimum condition for adsorption of malachite green by carbon nanotubes. Five experimental factors, namely initial dye concentration, mass of adsorbent, pH, contact time and agitation speed were studied. Maximum adsorption of malachite green was achieved at the suggested optimum conditions: initial dye concentration (20 ppm), weight of adsorbent (0.03 g), pH solution (7) contact time (17 min) and agitation speed (150 strokes per min). The experimental value of adsorption by multi-walled carbon nanotubes were found to be in good agreement with the predicted value (R2 = 0.922).The experimental equilibrium data were best fitted to isotherm model (Langmuir) and kinetic model (pseudo second-order) respectively. Maximum adsorption by carbon nanotubes at monolayer for malachite green was obtained at 112.36 mg/g while kinetic rate constant was calculated to be 0.0017 g mg-1 min-1.

 

Keywords: carbon nanotubes, adsorption, malachite green, experimental design

 

Abstrak

Metodologi reka bentuk eksperimen telah dijalankan dalam pengoptimuman penyingkiran pewarna malakit hijau oleh karbon tiub nano multi-dinding. Reka bentuk komposit berpusat (25) telah dipilih untuk membentuk satu model matematik dan menentukan kondisi yang optima untuk penjerapan malakit hijau oleh karbon tiub nano. Lima faktor eksperimen yang terdiri daripada kepekatan awal pewarna, berat bahan penjerap, pH larutan, masa sentuhan dan kelajuan goncangan telah dikaji. Malakit hijau telah mencapai penjerapan yang optima oleh karbon tiub nano pada kondisi: kepekatan awal pewarna (20 ppm), berat bahan penjerap (0.03 g), pH larutan (7), masa sentuhan (17 minit) dan kelajuan goncangan (150 strok/minit). Nilai eksperimen untuk penjerapan oleh karbon tiub nano multi-dinding telah mencapai persetujuan yang baik pada nilai jangkaan (R2 = 0.922). Data eksprimen keseimbangan menunjukkan kesesuaian pada model Langmuir dan model pseudo tertib kedua. Penjerapan maksimum oleh karbon tiub nano pada monolapisan untuk malakit hijau ialah 112.36 mg/g manakala pemalar kadar kinetik ialah 0.0017 g mg-1 min-1.

 

Kata kunci: karbon tiub nano, penjerapan, malakit hijau, reka bentuk eksperimen

 

References

1.       Buthelezi, S.P., Olaniran, A.O., and Pillay, B. (2012). Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17(12): 14260 - 14274.

2.       Sudova, E., Machova, J., Svobodova, Z., and Vesely, T. (2007). Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: A review. Veterinarni Medicina, 52(12): 527–539.

3.       Culp, S. and Beland, F. (1996). Malachite green: A toxicological review. International Journal of Toxicology, 15(3): 219-238.

4.       Srivastava, S., Sinha, R., and Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66(3): 319-329.

5.       Culp, S.J., Mellick, P.W., Trotter, R.W., Greenlees, K.J., Kodell, R.L., and Beland, F.A. (2006). Carcinogenicity of malachite green chloride and leucomalachite green in B6C3F1 mice and F344 rats. Food and Chemical Toxicology, 44(8): 1204-1212.

6.       Hidayah, N., Abu Bakar, F., Nur-Azura, M.S., Mahyudin, N.A., Zaman, M.Z., and Faridah, S. (2013). Detection of malachite green and leuco-malachite green in fishery industry. International Food Research Journal, 20(4): 1511-1519.

7.       Mitrowska, K., Posyniak, A., and Zmudzki, J. (2007). The effects of cooking on residues of malachite green and leucomalachite green in carp muscles. Analytica Chimica Acta, 586(1-2): 420-425.

8.       Cho, B.P., Yang, T., Blankenship, L.R., Moody, J.D., Churchwell, M., Beland, F.A., and Culp, S.J. (2003). Synthesis and characterization of N-Demethylated metabolites of malachite green and leucomalachite green. Chemical Research in Toxicology, 16(3): 285-294.

9.       Derakhshan, M.S. and Moradi, O. (2014). The study of thermodynamics and kinetics methyl orange and malachite green by SWCNTs, SWCNT-COOH and SWCNT-NH2 as adsorbents from aqueous solution. Journal of Industrial and Engineering Chemistry, 20(5): 3186-3194.

10.    Madrakian, T., Afkhami, A., Ahmadi, M., and Bagheri, H. (2011). Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. Journal of Hazardous Materials, 196: 109-114.

11.    Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: A review. Process Biochemistry, 40(3-4): 997-1026.

12.    Robinson, T., McMullan, G., Marchant, R., and Nigam, P. (2001). Remediation of dyes in textile effluent: A critical on current treatment technologies with a propose alternative. Bioresource Technology, 77: 247-255.

13.    Wu, C.H. (2007). Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 144(1-2): 93-100.

14.    Ren, X., Chen, C., Nagatsu, M., and Wang, X. (2011). Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 170(2-3): 395-410.

15.    Gupta, V.K., Kumar, R., Nayak, A., Saleh, T.A., and Barakat, M.A. (2013). Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: A review. Advances in Colloid and Interface Science, 193-194: 24-34.

16.    Gupta, V.K., Agarwal, S., and Saleh, T.A. (2011). Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Research, 45(6): 2207-2212.

17.    Li, Y.H., Ding, J., Luan, Z., Di, Z., Zhu, Y., Xu, C., Wu, D., and Wei, B. (2003). Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 41(14): 2787-2792.

18.    Clément, P., Hafaiedh, I., Parra, E.J., Thamri, A., Guillot, J., Abdelghani, A., and Llobet, E. (2014). Iron oxide and oxygen plasma functionalized multi-walled carbon nanotubes for the discrimination of volatile organic compounds. Carbon, 78: 510-520.

19.    Kerkez, Ö. and Bayazit, Ş.S. (2014). Magnetite decorated multi-walled carbon nanotubes for removal of toxic dyes from aqueous solutions. Journal of Nanoparticle Research, 16(6): 1-11.

20.    Yao, Y., Xu, F., Chen, M., Xu, Z., and Zhu, Z. (2010). Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technology, 101(9): 3040-3046.

21.    Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., and Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5): 965-977.

22.    Ravikumar, K., Deebika, B., and Balu, K. (2005). Decolourization of aqueous dye solutions by a novel adsorbent: Application of statistical designs and surface plots for the optimization and regression analysis. Journal of Hazardous Materials, 122(1-2): 75-83.

23.    Roosta, M., Ghaedi, M., Shokri, N., Daneshfar, A., Sahraei, R., and Asghari, A. (2014). Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 118: 55-65.

24.    Ghaedi, M., Mazaheri, H., Khodadoust, S., Hajati, S., and Purkait, M.K. (2015). Application of central composite design for simultaneous removal of methylene blue and Pb2+ ions by walnut wood activated carbon. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 135: 479-490.

25.    Roosta, M., Ghaedi, M., Daneshfar, A., Darafarin, S., Sahraei, R., and Purkait, M.K. (2014). Simultaneous ultrasound-assisted removal of sunset yellow and erythrosine by ZnS:Ni nanoparticles loaded on activated carbon: Optimization by central composite design. Ultrasonic Sonochemistry, 21(4): 1441-1450.

26.    Ghaedi, M. and Mosallanejad, N. (2014). Study of competitive adsorption of malachite green and sunset yellow dyes on cadmium hydroxide nanowires loaded on activated carbon. Journal of Industrial and Engineering Chemistry, 20(3): 1085-1096.

27.    Khataee, A.R., Fathinia, M., Aber, S., and Zarei, M. (2010). Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: Intermediates identification. Journal of Hazardous Materials, 181(1-3): 886-897.

28.    Ghaedi, M., Ansari, A., Habibi, M.H., and Asghari, A.R. (2014). Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: Kinetics and isotherm study. Journal of Industrial and Engineering Chemistry, 20(1): 17-28.

29.    Shirmardi, M., Mahvi, A.H., Hashemzadeh, B., Naeimabadi, A., Hassani, G., and Niri, M.V. (2013). The adsorption of malachite green (MG) as a cationic dye onto functionalized multi walled carbon nanotubes. Korean Journal of Chemical Engineering, 30(8): 1603-1608.

30.    Gholizadeh, A., Kermani, M., Gholami, M., Farzadkia, M., and Yaghmaeian, K. (2013). Removal efficiency, adsorption kinetics and isotherms of phenolic compounds from aqueous solution using rice bran ash. Asian Journal of Chemistry, 25(7): 3871-3878.

31.    Farghali, A.A., Bahgat, M., ElRouby, W.M.A., and Khedr, M.H. (2013). Decoration of multi-walled carbon nanotubes (MWCNTs) with different ferrite nanoparticles and its use as an adsorbent. Journal of Nanostructure in Chemistry, 3(50): 1-12.

32.    Tang, W.W., Zeng, G.M., Gong, J.L., Liu, Y., Wang, X.Y., Liu, Y.Y., Liu, Z.F., Chen, L., Zhang, X.R., and Tu, D.Z. (2012). Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube. Chemical Engineering Journal, 211-212: 470-478.

33.    Bahgat, M., Farghali, A.A., El Rouby, W., Khedr, M., and Mohassab-Ahmed, M.Y. (2012). Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite. Applied Nanoscience, 3(3): 251-261.

34.    Khani, M.H. (2011). Uranium biosorption by Padina sp. algae biomass: Kinetics and thermodynamics. Environmental Science Pollution Research, 18(9): 1593-1605.

 




Previous                    Content                    Next