Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 560 - 566

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-14

 

 

 

COMPARATIVE COLUMN STUDIES OF CHEMICALLY MODIFIED ION EXCHANGE RESIN WITH AGGLOMERATED ADSORBENTS FOR FLUORIDE REMOVAL

 

(Kajian Perbandingan Turus Resin Penukaran Ion Terubahsuai dengan Penjerap Teraglomerat bagi Penyingkiran Fluorida)

 

Sivasankari Chandasekaran1* and Arulanantham Arthanas2

 

1Department of Chemistry,

Government College of Technology, Coimbatore 641 013, India 

2Department of Chemistry,

Sri Sakthi Institute of Engineering and Technology, Coimbatore 641 062, India

 

*Corresponding author: sivasankarigct@gmail.com

 

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

The present study is aimed to prepare three different granular adsorbents and applying on fluoride removal in column operations. Commercially available powdered adsorbents activated alumina (PAA) and tri-calcium phosphate (PTCP) is agglomerated to obtain granular polymer agglomerated alumina (GPAA) and granular polymer agglomerated tri-calcium phosphate (GTCP). Agglomeration was carried out using powdered adsorbents with neutral and non-toxic polymer Poly (vinyl acetate) to granular form of 20 – 50 mesh size. Plain Amberlite IRA 400 anion exchange resin (PR) was chemically modified (CMR) through phosphorylation by alum impregnation and investigated for fluoride removal as a third adsorbent. Column studies were carried out using 1.5 cm diameter columns to find out the suitability of the material for large scale applications. Solutions containing 5 mg L-1 of fluoride adjusted to pH 7.0 were allowed to percolate through the column at known flow rates. Under optimum  conditions of  flow  rate 10 mL min -1 and  bed  height  of 31 cm (25 g) of GPAA,  36 cm  (20 g) of GTCP and 42 cm  (20 g) of CMR respectively. The amount of fluoride removed were 1.948 mg g-1, 2.1005 mg g-1, and 2.3325 mg g-1 of the respective adsorbent. The effects of co-existing anions were also studied in column experiments. Column regeneration studies were also carried out for all the adsorbents with Al2(SO4)3 solutions. The cyclic regeneration experiments indicated that all the three adsorbents could be completely regenerated and used for repeated cycle. Ground water sample was collected from a village in Dharmapuri district of South India. The defluoridation capacity of the wet resin (6.80 mg g-1) was found to be three times more than dried resin. CMR potentially can be the best adsorbent for fluoride removal.

 

Keywords: defluoridation, agglomeration, poly vinyl acetate, granular adsorbents, column studies

 

Abstrak

Matlamat kajian ini adalah untuk menyediakan tiga penjerap berbutir yang berbeza dan diaplikasikan untuk penyingkiran fluorida dalam operasi turus. Penjerap komersial serbuk teraktif alumina (PPT) dan tri-kalsium fosfat (PTCP) digumpalkan untuk mendapatkan polimer berbutir alumina (GPAA) dan polimer berbutir tri-kalsium fosfat (GTCP). Penggumpalan telah dijalankan dengan menggunakan penjerap serbuk poli polimer (vinil asetat) neutral dan tidak toksik kepada bentuk berbutir dari 20-50 saiz sirat. Amberlit kosong IRA 400 anion resin pertukaran (PR), telah diubahsuai secara kimia (CMR) melalui kaedah pemfosforilan mengunakan impregnasi alum, dan diuji untuk penyingkiran fluorida sebagai penjerap ketiga. Kajian turus telah dilakukan dengan menggunakan 1.5 cm diameter turus bagi mengetahui kesesuaian bahan untuk aplikasi skala besar. Larutan fluorida yang berpekatan 5 mg L-1 dan pH 7.0 dibiarkan meresap melalui turus pada kadar aliran yang telah dikenalpasti. Di bawah keadaan optimum, kadar aliran ialah 10 mL min -1 dan ketinggian dasar masing – masing ialah 31 cm (25 g) GPAA, 36 cm (20 g) GTCP dan 42 cm (20 g) CMR. Jumlah fluoride yang disingkirkan ialah 1,948 mg g-1, 2,1005 mg g-1, dan 2,3325 mg g-1 mengikut bahan penjerap masing-masing. Kesan anion sedia ada juga dikaji dalam eksperimen turus. Kajian pengunaan semula turus turut dijalankan untuk semua penjerap menggunakan larutan Al2(SO4)3. Eksperimen  penghasilan semula kitaran menunjukkan bahawa ketiga-tiga penjerap boleh dihasilkan semula sepenuhnya dan digunakan untuk kitaran berulang. Sampel air bawah tanah telah dikumpulkan dari sebuah kampung di daerah Dharmapuri, India Selatan. Kapasiti penyingkiran fluorida oleh resin basah (6.80 mg g-1) telah didapati tiga kali lebih tinggi daripada resin kering. CMR berpotensi menjadi penjerap yang terbaik untuk penyingkiran fluorida.

 

Kata kunci: penyingkiran fluorida, penggumpalan, poli vinil asetat, penjerap berbutir, kajian turus

 

References

1.       World Health Organization, WHO (1984), Guidelines for Drinking water Quality: Health Criteria and Supporting Information, World Health Organization, Geneva, Switzerland, Vol. II.

2.       Bell, M. C. and Ludwig, T. G. (1970). The supply of fluoride to man: ingestion from water, in: Fluorides and Human Health, WHO Monograph Series 59, World Health Organization, Geneva.

3.       Adler, H., Klein, G. and Lindsay F. K. (1938). Removal of fluorides from potable water by Tri-calcium phosphate. Industrial and Engineering Chemistry, 30 (2): 163 – 165.

4.       Kemer, B., Ozdes, D., Gundogdu, A., Bulut, N., Duran, C. and Soyla, M. (2009). Removal of fluoride ions from aqueous solution by waste mud. Journal of Hazardous Materials, 168: 888 – 894.

5.       Ragunathan J. and Krishnamoorthy S. (1984). Studies on resorcinol formaldehyde cationic resins. Journal of Indian Chemical Society, 61(10): 911 – 914.

6.       Kagne, S., Jagtap, S., Dhawade, P., Kamble, S. P., Devotta, S. and Rayalu, S. S. (2008). Hydrated cement: A promising adsorbent for the removal of fluoride from aqueous solution. Journal of Hazardous Materials, 154: 88 – 95.

7.       Tang, Y., Guan, X., Su, T., Gao, N. and Wang, J. (2009). Fluoride adsorption onto activated alumina: Modeling the effects of pH and some competing ions. Colloids and surfaces A: Physicochemical Engineering Aspects, 337: 33 – 38.

8.       Viswanathan, N. and Meenakshi S. (2009). Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride. Journal of Hazardous Materials, 162: 920 – 930.

9.       Nur, T., Loganathan, P., Nguyen, T. C., Vigneswaran, S., Singh, G and Kandasamy, J. (2014). Batch and column adsorption and desorption of fluoride using hydrous ferric oxide: solution chemistry and modeling. Chemical Engineering Journal, 247: 93 – 102.

10.    Arulanantham, A., Ramakrishna, T. V. and Balasubramanian, N. (1992). Studies on fluoride removal by coconut shell carbon. Indian Journal of Environmental Protection, 12(7): 531 – 536.




Previous                    Content                    Next