Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 678 - 686

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-29

 

 

 

Preparation of Membrane Electrode Assembly for High Performance of Formic Acid Fuel Cell

 

(Penyediaan Himpunan Membran Elektrod untuk Sel Fuel Asid Formik Berprestasi Tinggi)

 

Norraihanah Mohamed Aslam1, Mohd Shahbudin Masdar1,2*, Siti Kartom Kamarudin1,2

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: shahbud@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

This study is focused on development of membrane electrode assembly (MEA) for direct formic acid fuel cell (DFAFC). The effects of the backing layer, the loading of the gas diffusion layer (GDL), the carbon structures and the electrolyte membrane types, and fuel concentrations on the DFAFC’s performance are investigated. Two types of backing layer are used in either a carbon paper (CP) or carbon cloth (CC) form, and three different types of carbon structures, carbon black (CB), carbon nanofiber (CNF) and carbon nanotube (CNT), are studied. A single cell DFAFC is tested to obtain the performance of the MEA, including the open circuit potential (OCP), current density, and power density. From the results, carbon paper indicates a much better performance than carbon cloth and gas diffusion layer (GDL) with 1 mg cm-2 loading shows a uniform surface morphology under scanning electron microscopy (SEM) and records a higher power density than 2.5 mg cm-2. Moreover, it is found that the power density increases with increase of the formic acid concentration up to an optimum concentration. However, the optimum fuel concentrations are different for each type of carbon structure. The highest power density is obtained using a combination of CNT and electrolyte membrane of Nafion 117 at 18.36 mW cm-2 using 10 M fuel concentration.

 

Keywords:  electrode; performance, microporous, characteristic, direct formic acid fuel cell

 

Abstrak

Kajian in tertumpu kepada pembangunan himpunan membran elektrod (MEA) untuk asid formik sel fuel langsung (DFAFC). Kesan lapisan sokongan, kandungan lapisan resapan gas (GDL), struktur karbon and jenis membran elektrolit, serta kepekatan bahan api terhadap prestasi DFAFC diselidiki. Dua jenis lapisan sokongan sama ada kertas karbon mahupun kain karbon, dan tiga jenis struktur karbon; karbon hitam (CB), nano-serat karbon (CNF) dan nano-tiub karbon (CNT) digunakan dalam kajian ini. Sel tunggal DFAFC diuji untuk memperoleh prestasi MEA termasuk keupayaan litar terbuka (OCP), ketumpatan arus dan ketumpatan kuasa. Berdasarkan hasil kajian, kertas karbon menunjukkan prestasi yang lebih baik berbanding kain karbon. Manakala, GDL dengan kandungan 1 mg cm-2 menunjukkan morfologi permukaan yang seragam di bawah mikroskop pengimbas elektron (SEM) dan merekodkan ketumpatan kuasa yang lebih  tinggi berbanding 2.5 mg cm-2. Sementara itu, ketumpatan kuasa meningkat dengan peningkatan kepekatan asid formik sehingga kepekatan optimum. Ketumpatan kuasa yang tertinggi diperoleh melalui kombinasi CNT dan membran elektrolit Nafion 117 pada  nilai 18.36 mW cm-2 menggunakan kepekatan bahan api 10 M.

 

Kata kunci:  elektrod, prestasi, mikroporos, pencirian, asid formik sel fuel langsung

 

References

1.       Kim, H. S., Morgan, R. D., Gurau, B. and Masel, R. I.   (2009).   A miniature direct formic acid fuel cell battery.  Journal of Power Sources, 188(1): 118 – 121.

2.       Miesse, C. M., Jung, W. S., Jeong, K.-J., Lee, J. K., Lee, J., Han, J., Yoon, S. P., Nam, S. W., Lim, T.-H. and Hong, S.-A.   (2006).   Direct formic acid fuel cell portable power system for the operation of a laptop computer.  Journal of Power Sources, 162(1): 532 – 540.

3.       Ahmad, M. M., Kamarudin, S. K. and Daud, W. R. W.  (2010). Design of and optimal micro direct methanol fuel cell for portable applications. Sains Malaysiana 39(3):467 – 472.

4.       Hashim, N., Kamarudin, S.K. and Daud, W. R. W. (2010). Design and development of micro direct methanol fuel cell.  Sains Malaysiana, 39(6): 1015 – 1023

5.       Jaafar, J, Ismail, A. F., Matsuura, T. and Mohd Nordin, M. N. A. (2013). Stability of SPEEK-triaminopyrimide polymer electrolyte membrane for direct methanol fuel cell application. Sains Malaysiana, 42(11):1671 – 1677.

6.       Uhm, S., Chung, S. T. and Lee, J. (2008). Characterization of direct formic acid fuel cells by impedance studies: in comparison of direct methanol fuel cells.  Journal of Power Sources, 178(1): 34 – 43.

7.       Kim, S., Han, J., Kwon, Y., Lee, K.-S., Lim, T.-H., Nam, S. W. and Jang, J. H. (2011). Effect of nafion ionomer and catalyst in cathode layers for the direct formic acid fuel cell with complex capacitance analysis on the ionic resistance.  Electrochimica Acta, 56(23): 7984 – 7990.

8.       Uhm, S., Lee, J. K., Chung, S. T. and Lee, J. (2008). Effect of anode diffusion media on direct formic acid fuel cells.  Journal of Industrial and Engineering Chemistry, 14(4): 493 – 498.

9.       Sharma, S. and Pollet, B. G. (2012). Support materials for PEMFC and DMFC electrocatalysts - A review.  Journal of Power Sources, 208(0): 96 – 119.

10.    Zainoodin, A. M., Kamarudin, S. K. and Daud, W. R. W. (2010). Electrode in direct methanol fuel cells.  International Journal of Hydrogen Energy, 35(10): 4606 – 4621.

11.    Jeong, K-J, Miesse, C. M., Cho,i J-H., Lee, J., Han, J. and Yoon, S. P. (2007). Fuel crossover in direct formic acid fuel cells. Journal of Power Sources, 168: 119 – 125.

12.    Chen, W.-H., Ko, T.-H., Lin, J.-H., Liu, C.-H., Shen, C.-W. and Wang, C.-H. (2011). Influences of gas diffusion layers with pitch-based carbon coated in polymer electrolyte membrane fuel cell.  International Journal of Electrochemical Science, 6: 2192 – 2200.

13.    Konduru, V. (2010). Static and dynamic contact angle measurement on rough surfaces using sessile drop profile analysis with application to water management in low temperature fuel cells. Michigan Technological University.

14.    Litster, S. and Mclean, G. (2004). PEM fuel cell electrodes.  Journal of Power Sources, 130(1): 61 – 76.

15.    Choi, J. and Zhang, Y. (2015). Properties and applications of single-, double- and multi-walled carbon nanotubes. Sigma Aldrich. Access online [26 May 2015].

16.    Sundarrajan, S., Allakhverdiev, S. I. and Ramakrishna, S. (2012). Progress and perspectives in micro direct methanol fuel cell.  International Journal of Hydrogen Energy, 37(10): 8765 – 8786.

17.     Zhu, Y., Ha, S. Y. and Masel, R. I. (2004). High power density direct formic acid fuel cells.  Journal of Power Sources, 130(1-2): 8 – 14.

18.    Ha, S., Dunbar, Z. and Masel, R. I. (2006). Characterization of a high performing passive direct formic acid fuel cell.  Journal of Power Sources, 158(1): 129 – 136.

19.    Rhee, Y.-W., Ha, S. Y. and Masel, R. I. (2003). Crossover of formic acid through Nafion® membranes.  Journal of Power Sources, 117(2): 35 – 38.

20.    Tsujiguchi, T., Iwakami, T., Hirano, S. and Nakagawa, N. (2014). Water transport characteristics of the passive direct formic acid fuel cell. Journal of Power Sources, 250: 266 – 273

21.    Park, S., Lee, J-W. and Popov, B. N. (2006). Effect of carbon loading in microporous layer on PEM fuel cell performance. Journal of Power Sources, 163:357 – 363.

 




Previous                    Content                    Next