Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 799 - 805

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-12

 

 

 

ISOLATION AND PURIFICATION OF LYSOZYME FROM ALBUMIN: EFFECT OF ALBUMIN CONCENTRATION, pH AND IONIC STRENGTH OF BUFFER SOLUTION

 

(Pemisahan dan Penulenan Lisozim dari Albumin: Kesan Kepekatan Albumin, pH dan Kekuatan Ionik Larutan Penimbal)

 

Amirah Hamzah1, Sofiah Hamzah1*, Fatin Mohd Nasir1, and Marinah Mohd Ariffin2

 

1School of Ocean Engineering

2School of Marine Science and Environment

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

 

*Corresponding author: sofiah@umt.edu.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

The low content of lysozyme in albumin makes its purification process becomes complicated and challenge either in lab or industrial scale system. This study aimed to investigate the parameters influencing the purification performance lysozyme from chicken egg white namely initial concentration of albumin, pH and ionic strength of buffer solution. Immobilized metal affinity chromatography (IMAC) beads were prepared using chitosan-coated silica beads which then crosslinked with glutaraldehyde (GTA) and reacted with metal ion copper (Cu) for metal ion immobilization to be used as purification tools. The prepared beads were characterized in term of morphology and structure using scanning electron microscope (SEM). Column chromatographic has been utilized for evaluation performance of IMAC for lysozyme separation. Optimum recovery obtained using 20 mg/ml CEW concentration at pH 7, with 0.05 M ionic strength. The finding of this study exhibited a good pathway to design an affinity system for lysozyme purification either from chicken egg white or other sources in the future.

 

Keywords: lysozyme, chicken egg white, purification, pH, ionic strength, affinity chromatography

 

Abstrak

Kandungan lisozim yang rendah di dalam albumin membuatkan proses penulenan menjadi semakin rumit dan mencabar sama ada sistem di makmal atau industri. Kajian ini bertujuan untuk mengoptimumkan parameter yang mempengaruhi prestasi penulenan lisozim dari albumin iaitu kepekatan awal albumin, pH dan kekuatan ionik larutan penimbal. Kromatografi affiniti logam pegun telah disediakan dengan menggunakan silika yang bersalut kitosan yang kemudiannya diaktifkan menggunakan glutaraldehid (GTA) serta bertindak balas dengan ion logam kuprum bagi pemegunan ion logam (kuprum) untuk digunakan sebagai alat penulenan. Pencirian silika telah dilakukan dari segi morfologi dan struktur dengan menggunakan mikroskop elektron pengimbas (SEM). Kolum kromatografi digunakan untuk menilai prestasi IMAC bagi pemisahan lisozim. Penghasilan yang optimum diperolehi dengan menggunakan 20 mg/ml kepekatan putih telur pada pH 7 dengan kekuatan ionik sebanyak 0.05 M. Hasil kajian ini menunjukkan cara yang baik untuk mereka bentuk sistem affiniti untuk penulenan lisozim sama ada daripada sumber putih telur atau sumber lain pada masa akan datang.

 

Kata kunci: lisozim, albumin, penulenan, pH, kekuatan ionik, kromatografi affiniti

 

References

1.       Muller, A., Daufin, G. and Chaufer, B. (1999). Ultrafiltration modes of operation of α-lactalbumin from acid casein whey. Journal of Membrane Science, 153: 9 – 21.

2.       Wan, W. H., Lub, J. R., and Cui, Z. F. (2006). Separation of lysozyme from chicken egg white using ultrafiltration. Separation and Purification Technology, 48: 133 – 142.

3.       Yilmaz, M., Bayromoğlu, G. and Arica, M. Y. (2005). Separation and purification of lysozyme by Reactive Green 19 immobilised membrane affinity chromatography. Food Chemistry, 89: 11 – 18.

4.       Shin, H. S. and Cha, H. J. (2003). Statistical optimization for immobilized metal affinity purification of secreted human erythropoietin from Drosophila S2 cells. Protein Expression and Purification, 28: 331 – 339.

5.       Shi, Q. H., Tian, Y., Dong, X. Y., Bai, S. and Sun, Y. (2003). Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption. Biochemical Engineering Journal, 16: 317 – 322.

6.       Lu, A. X., Liao, X. P., Zhou, R. Q. and Shi, B. (2007). Preparation of Fe(III)-immobilized collagen fiber for lysozyme adsorption. Colloids and Surfaces A: Physicochemical Engineering Aspects, 301: 85 – 93.

7.       Kruger, N. J. (2002). The protein protocols handbook, second edition: the Bradford method for protein quantitation. Humana Press, pp.15 – 21.

8.       Guo, W. and Ruckenstein, E. (2003). Separation and purification of horseradish peroxidise by membrane affinity chromatography. Journal Membrane Science, 211: 101 – 111.

9.       Ghosh, R., Sudarshana, S. S. and Cui, Z. F. (2000). Lusozyme separation by hollow-fibre ultrafiltration. Biochemical Engineering Journal, 6: 19 – 24.

10.    Evrim, B. A. and Adil, D. (2006). Monosize poly(glycidyl methacrylate) beads for dye-affinity purification of lysozyme. International Journal of Biological Macromolecules, 38: 99 – 106.

11.    Sun, Y., Liu, Y., Li, Y., Lv., M., Li, P., Xu, H. and Wang, L. (2011).  Preparation and characterization of novel curdlan/chitosan blending membranes for antibacterial applications. Carbohydrate Polymers, 84: 952 – 959.

12.    Hamzah, S., Nasir, F. M and Hamzah, A. (2014). Lysozyme adsorption onto immobilised metal affinity chromatographic adsorbent: effect of pH and ionic strength. International Journal of Applied Engineering Research, 9: 17783 – 17792.

13.    Gustafsson, C., Thorn, C. and Holmberg, K. (2011). A comparison of lipase and trypsin eccapsulated in  mesoporous materials with varying pore sizes and pH conditions. Colloids and Surfaces B: Biointerfaces, 87: 464 – 471.

14.    Muller, C.H., Agarwal, G.P., Melin, T. and Vintgens, T. (2003). Study of UF of single and binary protein solution in a thin spiral channel module. Journal of Membrane Science, 227: 51 – 69.

 




Previous                    Content                    Next