Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 877 - 884

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-23

 

 

 

Effects of Fuel Concentrations, Catalyst loadings and Activation on the Performance of Direct Formic Acid Fuel Cell (DFAFC) Stack

 

(Kesan Kepekatan Bahan Api, Kandungan Mangkin dan Pengaktifan ke atas Prestasi Tindanan Sel Bahan Api Asid Formik Langsung (DFAFC))

 

Mohd Shahbudin Masdar1, 2*,  Nurulain Ngah1, Norraihanah Mohamed Aslam2, Dedikarni Panuh2,

Siti Kartom Kamarudin1,2, Wan Ramli Wan Daud1,2

 

1Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment

2Fuel Cell Institute

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: shahbud@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

An air-breathing stack for a direct formic acid fuel cell (DFAFC) was designed, fabricated and evaluated. The DFAFC stack consisted of six cells arranged in a hexagonal arrangement and each single cell contained a pair of stainless steel current collectors, a membrane electrode assembly (MEA) and a cathode end-plate. A fuel reservoir was located at the center which supplied formic acid supply to the anode of each cell. The effects of fuel concentration, palladium (Pd) loading at the anode and activation on DFAFC performance and long term operation were evaluated. DFAFC stack performance increased with increasing fuel concentration and a stable power up to 200 mW at 2.4 V was achieved for passive and ambient conditions at a 7 M fuel concentration. Catalyst loading had a slight effect on DFAFC performance, where 4 mg cm-2 Pd loading was best for 7 M fuel operation. During long-term operation, the DFAFC stack could be operated for 27 hours without adding more fuel and less than a 20 % reduction in performance during operation. MEA reactivation with deionized water technique was required for immediate recovery of stack performance.

 

Keywords:  stack, activation, passive direct formic acid fuel cell, membrane electrode assembly

 

Abstrak

Tindanan pasif udara bagi sel bahan api asid formik langsung (DFAFC) direka bentuk, difabrikasi dan diuji. Tindanan DFAFC mengandungi enam sel yang dibentuk secara susunan heksagon. Setiap sel mempunyai sepasang pengumpul arus, himpunan membran elektrod (MEA) dan plat penghujung katod. Takungan bahan api ditempatkan di tengah yang mana akan membekalkan asid formik ke setiap sel. Kesan kepekatan bahan api, kandungan palladium (Pd) di anod dan pengaktifan terhadap prestasi dan jangka masa panjang DFAFC dikaji. Prestasi tindanan DFAFC meningkat dengan peningkatan kepekatan bahan api dan kuasa yang stabil sehingga 200 mW dicapai pada 2.4 V dan 7 M kepekatan bahan api dalam keadaan pasif dan persekitaran. Kandungan mangkin mempunyai kesan minimum terhadap prestasi DFAFC yang mana kandungan Pd 4 mg cm-2 merupakan kandungan terbaik bagi pengoperasian 7 M kepekatan asid formik. Sepanjang pengoperasian jangka masa panjang, tindanan DFAFC boleh beroperasi selama 27 jam tanpa menambah bahan api di dalam takungan dan kurang daripada 20 % pengurangan prestasi tindanan. Pengaktifan MEA menggunakan teknik nyahion air diperlukan bagi pemulihan segera prestasi tindanan DFAFC.

 

Kata kunci:  tindanan, pengaktifan, sel bahan api asid formik langsung pasif, himpunan membran elektrod

 

References

1.       Zhu, Y., Khan, Z. and Masel, R. I. (2005). The behavior of palladium  catalysts in direct formic acid fuel cells. Journal of Power Sources, 139: 15 – 20.

2.       Cai, W., Liang, L., Zhang, Y., Xing, W. and Liu, C. (2013).   Real  contribution of formic acid in direct formic acid fuel cell: Investigation of origin and guiding for micro structure design. International Journal of Hydrogen Energy, 38: 212 – 218.

3.       Baik, S. M., Han, J., Kim, J. and Kwon, Y. (2011).  Effect of deactivation and reactivation of  palladium anode catalyst on  performance of  direct  formic acid fuel cell (DFAFC). International Journal of Hydrogen Energy, 36: 14719 – 14724.

4.       Zhu, Y., Ha, S.Y. and Masel, R. I. (2004).  High  power density direct formic acid fuel cells. Journal of Power Sources, 130: 8 – 14.

5.       Aslam, N. M.,  Masdar, M. S. and  Kamarudin, S. K.  (2013).   Effect of  different  types of  microporous  layer toward the performance of direct formic acid fuel cell. Jurnal Teknologi (Sciences & Engineering), 65: 41 – 45.

6.       Cai, W.,  Yan, L., Li, C.,  Liang, L.,  Xing, W. and  Liu C. (2012).  Development of a 30 W class direct formic acid  fuel  cell  stack  with high stability and durability. International Journal of Hydrogen Energy, 37: 3425 – 3432.

7.       Tsujiguchi, T.,  Hirano, S.,  Iwakami, T. and  Nakagawa, N. (2013). The performance degradation of a passive direct  formic  acid fuel cell and its improvement by a hydrophobic filter. Journal of Power Sources, 223: 42 – 49.

8.       Ahmad, M. M.,  Kamarudin, S. K. and  Daud, W. R. W.  (2010).  Design of and optimal micro direct methanol fuel cell for portable applications. Sains Malaysiana, 39(3): 467 – 472.

9.       Hashim, N.,  Kamarudin, S. K. and Daud, W. R.W. (2010).  Design and development of micro direct methanol fuel cell.  Sains Malaysiana, 39(6):1015 – 1023.

10.    Jaafar, J, Ismail, A. F., Matsuura, T. and Mohd Nordin, M. N. A. (2013). Stability of SPEEK-triaminopyrimide polymer electrolyte membrane for direct methanol fuel cell application. Sains Malaysiana, 42(11):1671 – 1677.

11.    Rice, C.,  Ha, S.,  Masel, R. I., Waszczuk, P.,  Wieckowski, A. and  Barnard, T. (2002). Direct formic acid fuel cells. Journal of Power Sources, 111: 83 – 89.

12.    Oedegaard, A.,  Hebling, C., Schmitz, A.,  Møller-Holst, S. and Tunold, R. (2004). Influence of diffusion layer properties on low temperature DMFC. Journal of Power Sources, 127: 187 – 196.

13.    Kim, J. S., Yu, J. K., Lee, H. S., Kim, J. Y., Kim, Y. C., Han, J. H., Oh, I. H. and Rhee, Y. W. (2005). Effect of temperature, oxidant and catalyst loading on the performance of direct formic acid fuel cell. Korean Journal of Chem Engineering, 22: 661 – 665.

14.    Ping, H.,  Yiliang, Z., Shijun, L., Jianhuang, Z., Xueyi, L. and Wei, C. (2011). A 4-cell miniature direct formic acid fuel cell stack with independent fuel reservoir: Design and performance investigation. Journal of Power Sources, 196(14): 5913 – 5917.

 




Previous                    Content                    Next