Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 751 - 759

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-07

 

 

 

IDENTIFICATION OF VOLATILE SECONDARY METABOLITES FROM AN ENDOPHYTIC MICROFUNGUS Aspergillus nomius KUB105

 

(Pengenalpastian Metabolit Sekunder Meruap daripada Kulat Mikro Endofitik

Aspergillus nomius KUB105)

 

Lateef Adebola Azeez1,2*, Sepiah Muid1,  Bolhassan Mohamad Hasnul1

 

1Department of Plant Science and Environmental Ecology, Faculty of Resource Science and Technology,

Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia

2Department of Plant Biology, Faculty of Life Science,

University of Ilorin, Nigeria

 

*Corresponding author: lateef.aa@unilorin.edu.ng

 

 

Received: 12 August 2015; Accepted: 9 May 2016

 

 

Abstract

Microfungi are a highly diverse group of micro-organisms and important components of the ecosystem with great potential for diverse metabolite production. During a survey of microfungi on leaves in a National Park in Sarawak, an uncommon endophytic microfungus Aspergillus nomius was encountered. The metabolite production of this microfungus was investigated by growing it in a liquid basal medium for 2 weeks. Gas Chromatography  - Mass Spectrometry (GC-MS) and Fourier Transform Infrared (FTIR) profiling of the secondary metabolites produced by this microfungus in the liquid medium revealed the presence of 46 different secondary metabolites. The metabolites include saturated hydrocarbons, alkyl halides, alcohols and an unsaturated hydrocarbon. Majority of the metabolites produced were saturated hydrocarbons. Tetracosane, Icosane and 10-Methylicosane were the most abundant metabolites identified while heptadecane and 2,4-dimethylundecane were the least abundant respectively. This study is the first GC-MS and FTIR report of secondary metabolites from A. nomius. The results from this study confirm the ability of microfungi to produce diverse metabolites, including saturated hydrocarbons.

 

Keywords: Aspergillus nomius, endophytic fungi, gas chromatography, hydrocarbons, secondary metabolites

 

Abstrak

Kulat mikro adalah kumpulan yang pelbagai daripada organisma kecil dan merupakan komponen penting dalam ekosistem dengan potensi besar dalam penghasilan pelbagai metabolit. Kulat mikro endofitik yang jarang dijumpai, iaitu Aspergillus nomius telah ditemui semasa kaji selidik kulat mikro atas daun yang dijalankan di Taman Negara, Sarawak. Penghasilan metabolit oleh kulat mikro ini telah dikaji dengan menumbuhkankannya dalam medium cecair asas selama dua minggu. Penghasilan sebanyak 46 metabolit sekunder oleh kulat mikro ini telah disahkan melalui penggunaan Kromatografi Gas – Spektrometri Jisim (GC-MS) dan profil (FTIR). Metabolit yang terhasil termasuklah hidrokarbon tepu, alkil halida, alkohol dan hidrokarbon tidak tepu. Kebanyakan metabolit yang dihasilkan adalah hidrokarbon tepu. Tetrakosana, Ikosana dan 10 Metilikosana adalah metabolit yang paling banyak dikenal pasti manakala heptadekana dan 2,4-dimetilundekana adalah yang paling sedikit. Kajian ini merupakan kajian pertama penghasilan metabolit sekunder dari A. nomius melalui penggunaan GC-MS dan FTIR. Hasil kajian ini mengesahkan kebolehan kulat mikro untuk menghasilkan pelbagai metabolit termasuklah hidrokarbon tepu.

 

Kata kunci: Aspergillus nomius, kulat endofitik , kromatografi gas, hidrokarbon, metabolit sekunder

 

References

1.       Blackwell, M. (2011). The fungi: 1, 2, 3 ... 5.1 million species? American Journal of Botany, 98 (3): 426 – 438.

2.       Strobel, G. A. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiology and Molecular Biology Reviews, 67 (4): 491 – 502.

3.       Strobel, G. A. (2014). The use of endophytic fungi for the conversion of agricultural wastes to hydrocarbons. Biofuels, 5(4): 447 - 455.

4.       Tamano, K. (2014). Enhancing microbial metabolite and enzyme production: current strategies and challenges. Frontiers in Microbiology, 5: 718 - 723.

5.       Agostini-Costa, T. da S., Silveira, D., Bizzo, H. R., Gimenes, M. A., and Vieira, R. F. (2012). Secondary Metabolites. INTECH Open Access Publisher.

6.       Netzker, T., Fischer, J., Weber, J., Mattern, D. J., König, C. C., Valiante, V.,Schroeckh, V. and Brakhage, A. A. (2015). Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Frontiers in Microbiology, 6: 299  302.

7.       Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Barbetti, M. J., Li, H., Woo, S. L. and Lorito, M. (2008). A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiological and Molecular Plant Pathology, 72 (1–3): 80 – 86.

8.       Pandi, M., Rajapriya, P. and Manoharan, P. T. (2013). Extraction and characterization of taxol: an anticancer drug from an endophytic and pathogenic fungi. Laboratory Protocols in Fungal Biology, 523 –527.

9.       Li, S. Y., Shi, L. J., Ding, Y., Nie, Y. and Tang, X. M. (2015). Identification and functional characterization of a novel fungal immunomodulatory protein from Postia placenta. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 78: 64 – 70.

10.    Marson Ascêncio, P. G., Ascêncio, S. D., Aguiar, A. A., Fiorini, A. and Pimenta, R. S. (2014). Chemical Assessment and Antimicrobial and Antioxidant Activities of Endophytic Fungi Extracts Isolated from Costus spiralis (Jacq.) Roscoe (Costaceae). Evidence-Based Complementary and Alternative Medicine, 2014: 1 – 10.

11.    Mizerska-Dudka, M., Jaszek, M., Błachowicz, A., Rejczak, T. P., Matuszewska, A., Osińska-Jaroszuk, M., Stefaniuk, D., Janusz, G., Sulej, J. and Kandefer-Szerszeń, M. (2015). Fungus Cerrena unicolor as an effective source of new antiviral, immunomodulatory, and anticancer compounds. International Journal of Biological Macromolecules, 79: 459 – 468.

12.    Strobel, G. A., Knighton, B., Kluck, K., Ren, Y., Livinghouse, T., Griffin, M., Spakowicz, D. and Sears, J. (2008). The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology, 154 (11): 3319 – 3328.

13.    Siddiquee, S., Cheong, B. E., Taslima, K., Kausar, H., and Hasan, M. M. (2012). Separation and identification of volatile compounds from liquid cultures of Trichoderma harzianum by GC-MS using three different capillary columns. Journal of Chromatographic Science, 50 (4): 358 – 367.

14.    Rakotoniriana, E. F., Munaut, F., Decock, C., Randriamampionona, D., Andriambololoniaina, M., Rakotomalala, T., Rakotonirina, E. J., Rabemanantsoa, C., Cheuk, K. S.,  Ratsimamanga, U., Mahillon, J., El-Jaziri, M., Quetin-Leclercq, J. and Corbisier, A. M. (2008). Endophytic fungi from leaves of Centella asiatica: occurrence and potential interactions within leaves. Antonie van Leeuwenhoek, 93 (1–2): 27 – 36.

15.    Murray, M. G., and Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8 (19): 4321 – 4325.

16.    White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics in PCR protocols: A guide to methods and applications. Academic Press, New York, USA., 315 – 322.

17.    National Center for Biotechnology Information (NCBI). (2015). BLAST: Basic Local Alignment Search Tool. Access online http://blast.ncbi.nlm.nih.gov/Blast.cgi [Retrieved May 7, 2016]

18.    Stucky, B. J. (2012). SeqTrace: A graphical tool for rapidly processing DNA sequencing chromatograms. Journal of Biomolecular Techniques, 23 (3): 90 – 93.

19.    Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J.-M.,Taly, J-F, Notredame, C. (2011). T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Research, 39 (Web Server issue), W13-17.

20.    Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics (Oxford, England), 30 (22): 3276 – 3278.

21.    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28 (10): 2731 – 2739.

22.    McMullin, D. R., Nsiama, T. K., and Miller, J. D. (2014). Secondary metabolites from Penicillium corylophilum isolated from damp buildings. Mycologia, 106 (4): 621 – 628.

23.    Kurtzman, C. P., Horn, B. W., & Hesseltine, C. W. (1987). Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Antonie van Leeuwenhoek, 53 (3): 147 – 158.

24.    De Lucca, A. J., Boue, S. M., Carter-Wientjes, C. and Bhatnagar, D. (2012). Volatile profiles and aflatoxin production by toxigenic and non-toxigenic isolates of Aspergillus flavus grown on sterile and non-sterile cracked corn. Annals of Agricultural and Environmental Medicine, 19 (1): 91 – 98.

25.    Fiedler, K., Schutz, E., and Geh, S. (2001). Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. International Journal of Hygiene and Environmental Health, 204: 111 – 121.

26.    Siddiquee, S., Azad, S. A., Abu Bakar, F., Naher, L. and Vijay Kumar, S. (2012). Separation and identification of hydrocarbons and other volatile compounds from cultures of Aspergillus niger by GC–MS using two different capillary columns and solvents. Journal of Saudi Chemical Society, 19 (3): 243 – 256.

27.    Sinha, M., Sørensen, A., Ahamed, A. and Ahring, B. K. (2015). Production of hydrocarbons by Aspergillus carbonarius ITEM 5010. Fungal Biology, 119 (4): 274 – 282.

28.    Devi, N. N. and Prabakaran, J. J. (2014). Bioactive metabolites from an endophytic fungus Penicillium sp. isolated from Centella asiatica. Current Research in Environmental & Applied Mycology, 4 (1): 34 – 43.

 




Previous                    Content                    Next