Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1329 - 1337

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-11

 

 

 

SYNTHESIS AND CHARACTERIZATION OF EPOXIDIZED NEOPENTHYL GLYCOL DIOLETE AS AN INTERMIDIATE OF BIOLUBRICANT

 

(Sintesis dan Pencirian Epoksida Dioleat Neopentil Glikol Sebagai Bahan Perantara Biopelincir)

 

Vanitah Rajaendran1, Jumat Salimon1, Rahimi M.Yusop1,2*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Regenerative Medicine Cluster, Advance Medical and Dental Institute,

 Universiti  Sains  Malaysia, 13200 Bertam Kepala Batas, Pulau Pinang, Malaysia

 

*Corresponding author: rahimi@ukm.edu.my

 

 

Received: 4 April 2016; Accepted: 5 August 2016

 

 

Abstract

Neopenthyl glycol dioleate (NPGDO) is a biolubicant base that was formed via esterification process with oleic acid. The presence of oleic acid leads to poor oxidative stability. In this study, epoxidation reaction between NPGDO, formic acid and hydrogen peroxide has been carried out to produce epoxidized NPG dioleate (ENPGDO) which acts as the intermediate of  biolubricant. Epoxidized oil can be further modified for better properties. The temperature for this reaction was 40 °C and the molar ratio of NPGDO:formic acid:hydrogen peroxide was 1:3:4. The reaction had taken place for 3 hours. The presence of the epoxy in the product was confirmed through Fourier Transform Infrared (FTIR). The structure of ENPGDO was confirmed using both proton and carbon Nuclear Magnetic Resonance (1H-NMR and 13C-NMR) analysis. The product was found to have 218 (viscosity indeks), 205 °C (flash point), −18 °C (pour point) and 197 °C (oxidative stability). The relative conversion of oxirane (RCO) for ENPGDO was 97.5%.

 

Keywords:  biolubicant, neopenthyl glycol, oleic acid, epoxidized NPG diolete

 

Abstrak

Dioleat neopentil glikol (DONPG) merupakan bahan asas biopelincir yang dihasilkan melalui tindak balas pengesteran dengan asid oleik. Kehadiran asid oleik menjadikan kestabilan oksidatifnya rendah. Di dalam penyelidikan ini, pengepoksidaan antara DONPG, asid formik dan hidrogen peroksida dilakukan bagi menghasilkan epoksida dioleat NPG (EDONPG) yang bertindak sebagai bahan perantara biopelincir. Modifikasi kimia dilakukan ke atas EDONPG menghasilkan sifat yang lebih baik. Suhu bagi tindak balas ini adalah 40 °C dan nisbah molar DONPG: asid formik: hidrogen peroksida adalah 1:3:4. Masa tindak balas adalah 3 jam. Kehadiran epoksi di dalam produk ditentukan melalui spektroskopi Fourier transformasi inframerah (FTIR). Struktur EDONPG pula ditentukan melalui proton dan karbon spektroskopi resonan magnetik nuklear (1H-NMR and 13C-NMR). Pencirian fizikal produk dimana indeks kelikatan produk adalah (218), takat kilat (205 °C), takat tuang (−18 °C) dan kestabilan oksidatif (197 °C). Relatif pertukaran oksirana (RCO) produk ialah 97.5%.

 

Kata kunci:  biopelincir, neopentil glikol, asid oleik, epoksida dioleat NPG

 

References

1.       Bart, J. C. J., Cavallaro, S. and Gucciardi, E. (2013). Biolubricants: Science and Technology. UK: Woodhead Publiching Limited.

2.       Bilal, S., Mohammed-Dabo, I. A., Nuhu, M., Kasim, S. A., Almustapha, I. H. and Yamusa, Y. A. (2013). Production of biolubricant from Jatropha Curcas seed oil. Journal of Chemical Engineering and Materials Science, 4(6): 72 – 79.

3.       Fong, M. N. F. and Salimon, J. (2012). Epoxidation of palm kernel oil fatty acids. Journal of Science and Technology, 4(2): 87 – 98.

4.       Petrovic, Z., Zhang, W., Javni, I. and Guo, X. A. (2003). Polymer concrete containing vegetable oil- based polyurethanes and method for their preparation. US Patent 090016.

5.       Ravindra, D. K.,  Priya, S. D.,  Sujay, U. M. and Pramod, P. M. (2013).  Epoxidation of mustard oil and ring opening with 2- ethylhexanol for biolubricant with enhanced thermo- oxidative and cold flow characteristics. Industrial Crops and Products, 49: 586 – 592.

6.       Meyer, P. P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan, W. and Tongurai, C. (2008). Epoxidation of soybean oil and jatropha oil. Thammasat Internasional Journal Science Technology, 13: 1 – 5.

7.       Gryglewicz, S., Piechocki, W. and Gryglewicz, G. (2003). Preparation of polyol esters based on vegetable and animal fats. Bioresource Technology, 87: 35 – 39.

8.       Xuedong, W., Xingang, Z., Shengong, Y., Haigang, C. and Dapu, W. (2000). The study of epoxidized rapseed oil used as a potential biodegradable lubricant. Journal of the American Oil Chemists Society, 77(5): 561 – 563.

9.       Rafiee- Moghaddam, R., Salimon, J., Jelas Haron, M. D., Jahangirian, H., Shah Ismail, M. H., Hosseini, S. and Rezayi, M. (2014). Lipase epoxidation optimizing of jatropha curcas oil using perlauric acid. Digest Journal of Nanomaterials and Biostructures, 9(3): 1159 – 1169.

10.    Salimon, J., Bashar, M. A., Rahimi, M. Y. and Nadia, S. (2014). Synthesis, reactivity and application studies for different biolubricants. Chemistry Central Journal, 8:16 – 27.

11.    Nadia, S., Salimon, J., Emad, Y. and Bashar, M. A. (2013). Biolubricant basestock from chemicaly modified plant oils: Ricinoleic acid based- tetraesters. Chemistry Central Journal, 7: 128 – 141.

12.    Salimon, J., Nadia, S. and Emad, Y. (2012). Improvement of pour point and stability of synthetic ester basestocks for biolubricant applications. Arabian Journal of Chemistry, 5: 193 – 200.

13.    Salimon, J., Nadia, S. and Bashar, M. A. (2011). Improvement of physicochemical characteristic of monoepoxide linoleic acid ring opening for biolubricant base oil. Journal of Biomedicine and Biotechnology, 2011: 1 – 8.

 




Previous                    Content                    Next