Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1329 - 1337
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-11
SYNTHESIS AND CHARACTERIZATION OF EPOXIDIZED
NEOPENTHYL GLYCOL DIOLETE AS AN INTERMIDIATE OF BIOLUBRICANT
(Sintesis dan Pencirian Epoksida Dioleat Neopentil
Glikol Sebagai Bahan Perantara Biopelincir)
Vanitah Rajaendran1, Jumat Salimon1,
Rahimi M.Yusop1,2*
1School of Chemical Sciences and Food Technology, Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Regenerative Medicine Cluster, Advance Medical and
Dental Institute,
Universiti
Sains Malaysia, 13200 Bertam
Kepala Batas, Pulau Pinang, Malaysia
*Corresponding author: rahimi@ukm.edu.my
Received: 4
April 2016; Accepted: 5 August 2016
Abstract
Neopenthyl
glycol dioleate (NPGDO) is a biolubicant base that was formed via
esterification process with oleic acid. The presence of oleic acid leads to poor
oxidative stability. In this study, epoxidation reaction between NPGDO, formic
acid and hydrogen peroxide has been carried out to produce epoxidized NPG
dioleate (ENPGDO) which acts as the intermediate of biolubricant. Epoxidized oil can be further
modified for better properties. The temperature for this reaction was 40 °C and
the molar ratio of NPGDO:formic acid:hydrogen peroxide was 1:3:4. The reaction had
taken place for 3 hours. The presence of the epoxy in the product was confirmed
through Fourier Transform Infrared (FTIR). The structure of ENPGDO was
confirmed using both proton and carbon Nuclear Magnetic Resonance (1H-NMR
and 13C-NMR) analysis. The product was found to have 218 (viscosity
indeks), 205 °C (flash point), −18 °C (pour point) and 197 °C (oxidative
stability). The relative conversion of oxirane (RCO) for ENPGDO was 97.5%.
Keywords: biolubicant, neopenthyl glycol, oleic acid, epoxidized
NPG diolete
Abstrak
Dioleat
neopentil glikol (DONPG) merupakan bahan asas biopelincir yang dihasilkan
melalui tindak balas pengesteran dengan asid oleik. Kehadiran asid oleik
menjadikan kestabilan oksidatifnya rendah. Di dalam penyelidikan ini,
pengepoksidaan antara DONPG, asid formik dan hidrogen peroksida dilakukan bagi
menghasilkan epoksida dioleat NPG (EDONPG) yang bertindak sebagai bahan
perantara biopelincir. Modifikasi kimia dilakukan ke atas EDONPG menghasilkan sifat
yang lebih baik. Suhu bagi tindak balas ini adalah 40 °C dan nisbah molar DONPG:
asid formik: hidrogen peroksida adalah 1:3:4. Masa tindak balas adalah 3 jam.
Kehadiran epoksi di dalam produk ditentukan melalui spektroskopi Fourier
transformasi inframerah (FTIR). Struktur EDONPG pula ditentukan melalui proton
dan karbon spektroskopi resonan magnetik nuklear (1H-NMR and 13C-NMR).
Pencirian fizikal produk dimana indeks kelikatan produk adalah (218), takat
kilat (205 °C), takat tuang (−18 °C) dan kestabilan oksidatif (197 °C). Relatif
pertukaran oksirana (RCO) produk ialah 97.5%.
Kata kunci: biopelincir, neopentil glikol, asid oleik,
epoksida dioleat NPG
References
1.
Bart,
J. C. J., Cavallaro, S. and Gucciardi, E. (2013). Biolubricants: Science and Technology.
UK: Woodhead Publiching Limited.
2.
Bilal,
S., Mohammed-Dabo, I. A., Nuhu, M., Kasim, S. A., Almustapha, I. H. and Yamusa,
Y. A. (2013). Production of biolubricant from Jatropha Curcas seed oil. Journal
of Chemical Engineering and Materials Science, 4(6): 72 – 79.
3.
Fong,
M. N. F. and Salimon, J. (2012). Epoxidation of palm kernel oil fatty acids. Journal of Science and Technology, 4(2):
87 – 98.
4.
Petrovic,
Z., Zhang, W., Javni, I. and Guo, X. A. (2003). Polymer concrete containing
vegetable oil- based polyurethanes and method for their preparation. US Patent
090016.
5.
Ravindra,
D. K., Priya, S. D., Sujay, U. M. and Pramod, P. M. (2013). Epoxidation of mustard oil and ring opening
with 2- ethylhexanol for biolubricant with enhanced thermo- oxidative and cold
flow characteristics. Industrial Crops
and Products, 49: 586 – 592.
6.
Meyer,
P. P., Techaphattana, N., Manundawee, S., Sangkeaw, S., Junlakan, W. and
Tongurai, C. (2008). Epoxidation of soybean oil and jatropha oil. Thammasat Internasional Journal Science Technology,
13: 1 – 5.
7.
Gryglewicz,
S., Piechocki, W. and Gryglewicz, G. (2003). Preparation of polyol esters based
on vegetable and animal fats. Bioresource
Technology, 87: 35 – 39.
8.
Xuedong,
W., Xingang, Z., Shengong, Y., Haigang, C. and Dapu, W. (2000). The study of
epoxidized rapseed oil used as a potential biodegradable lubricant. Journal of the American Oil Chemists Society,
77(5): 561 – 563.
9.
Rafiee-
Moghaddam, R., Salimon, J., Jelas Haron, M. D., Jahangirian, H., Shah Ismail,
M. H., Hosseini, S. and Rezayi, M. (2014). Lipase epoxidation optimizing of
jatropha curcas oil using perlauric acid. Digest
Journal of Nanomaterials and Biostructures, 9(3): 1159 – 1169.
10.
Salimon,
J., Bashar, M. A., Rahimi, M. Y. and Nadia, S. (2014). Synthesis, reactivity
and application studies for different biolubricants. Chemistry Central Journal, 8:16 – 27.
11.
Nadia,
S., Salimon, J., Emad, Y. and Bashar, M. A. (2013). Biolubricant basestock from
chemicaly modified plant oils: Ricinoleic acid based- tetraesters. Chemistry Central Journal, 7: 128 – 141.
12.
Salimon,
J., Nadia, S. and Emad, Y. (2012). Improvement of pour point and stability of synthetic
ester basestocks for biolubricant applications. Arabian Journal of Chemistry, 5: 193 – 200.
13.
Salimon,
J., Nadia, S. and Bashar, M. A. (2011). Improvement of physicochemical characteristic
of monoepoxide linoleic acid ring opening for biolubricant base oil. Journal of Biomedicine and Biotechnology, 2011:
1 – 8.