Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1365 - 1372
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-15
ENZYMATIC GLYCEROLYSIS OF METHYL
LAURATE UTILIZING Candida antarctica Lipase
b
(Gliserolisis Berenzim oleh Metil Laurat Menggunakan Lipase b Candida antarctica)
Norul Naziraa Ahmad Jamlus,
Jumat Salimon, Darfizzi Derawi*
School of
Chemical Sciences and Food Technology, Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: darfizzi@ukm.edu.my
Received: 1
February 2015; Accepted: 29 August 2016
Abstract
Enzymatic
glycerolysis using Candida antarctica lipase b (CALB) as catalyst was
studied. Production of monolaurin was optimized based on two selected types of
CALB, varying enzyme concentrations and reaction time. Novozyme-435 (N-435) and
Aspergillus oryzae were used in this
study. About 47.6% of monolaurin was synthesized using N-435 at a 5% enzyme
concentration within 24 hours of reaction time. Characterizations were
performed using different techniques namely gas chromatography-flame ionization
detector (GC-FID), thin layer chromatography (TLC) and Fourier transform
infrared spectroscopy (FTIR) analysis.
Keywords: methyl laurate, enzymatic glycerolysis,
monolaurin, Novozyme-435, Aspergillus
oryzae
Abstrak
Tindak
balas gliserolisis berenzim menggunakan lipase b Candida antarctica
(CALB) telah dikaji. Penghasilan monolaurin dioptimumkan berasaskan dua jenis
CALB, kepekatan enzim dan masa tindak balas. Novozym-435 (N-435) dan Aspergillus oryzae digunakan dalam
kajian ini. Sebanyak 47.6% monolaurin telah berjaya disintesis menggunakan
N-435 pada kepekatan enzim 5% dalam tempoh 24 jam masa tindak balas. Pencirian
dijalankan menggunakan teknik analisis berbeza seperti kromatografi gas (GC),
kromatografi lapisan nipis (TLC) dan spektroskopi inframerah transfomasi
Fourier (FTIR).
Kata kunci: metil laurat, gliserolisis berenzim,
monolaurin, Novozym-435, Aspergillus
oryzae
References
1.
Kathryn,
M. K. and Wong, C. H. (2001). Review article enzymes for chemical
synthesis. International Weekly Journal
of Science, 409: 232 – 240.
2.
Projan,
S. J., Brown-Skrobot, S. and Schlievert, P. M. (1994). Glycerol monolaurate
inhibits the production of B-lactamase, toxic shock syndrome toxin-1 and other
staphylococcal exoproteins by interfering with signal transduction. Journal of Bacteriology, 176: 4204 – 4209.
3.
Mansor,
T. S. T., Che Man, Y. B., Shuhaimi, M., Abdul Afiq, M. J. and Ku Nurul, F. K.
M. (2012). Physicochemical properties of virgin coconut oil extracted from
different processing methods.
International Food Research Journal, 19: 837 – 845.
4.
Ferrettia,
C. A., Fuenteb, S., Ferullob, R., Castellanib, N., Apesteguíaa,
C. R. and Di Cosimoa, J. I. (2012). Monoglyceride synthesis by
glycerolysis of methyl oleate on MgO, catalytic and DFT study of the active
site. Applied Catalysis A, General,
413 – 414: 322 – 331.
5.
Cervera,
M. A. R., Veneges, E., Bueno, R. R., García, I. R. and José
Luis, G. G. (2013). Acyl migration evaluation in monoacylglycerols
from Echium plantagineum seed oil and Marinol. Journal of Bioscience and Bioengineering, 115: 518 – 522.
6.
Rahmana, H., Anggadiredjaa, K. and Sitompulb, J. P. (2015). Synthesis and
characterization of 2-monoacylglycerols from Canarium oil. Procedia Food Science, 3: 162 – 173.
7.
Solaesa, A. G., Sanz,
M. T., Falkeborg, M., Beltrán, S. and Zheng, G. (2016). Production and concentration
of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic
glycerolysis and molecular distillation. Food
Chemistry, 190: 960 – 967.
8.
Hermida,
L., Abdullah, A. Z. and Mohamed, A. R. (2011).
Synthesis of monoglyceride through glycerol esterification with
lauric acid over propyl sulfonic acid post-synthesis
functionalized SBA-15 mesoporous catalyst. Chemical Engineering Journal, 174: 668 – 676.
9.
Stergioua, P. Y., Foukisa, A., Filippoub, M., Koukouritakib, M., Parapoulib, M., Theodoroua, L. G., Hatziloukasb, E., Afendrab,
A. , Pandeyc, A. and Papamichaela, E. M. (2013). Advances in lipase-catalyzed
esterification reactions. Biotechnology
Advances, 31: 1846 – 1859.
10.
Guldhea, A., Singha,
P., Kumaria, S., Ismail,
Rawata., Permaulb,
K. and Buxa, F. (2016). Biodiesel synthesis from
microalgae using immobilized Aspergillus
niger whole cell lipase biocatalyst. Renewable
Energy, 85: 1002 – 1010.
11.
Amanda,
A., Miranda, L. S. M. and Rodrigo,
O. M. A. (2013) Lipases, valuable catalysts for dynamic kinetic resolutions. Biotechnology Advances, 31: 1846 – 1859.
12.
Hauerlandováa, I., Lorencováb,
E., Buňkab, F., Navrátila, J., Kristýna, Janečkováa. K. and Buňkovác, L. (2014). The influence of fat and
monoacylglycerols on growth of spore-forming bacteria in processed cheese. International Journal of Food Microbiology,
182 – 183: 37 – 43.
13.
Ramirez,
M. 2013. Candida Antarctica lipase b, Enzyme Report. University of Georgia, Athens, Georgia, United
States.
14.
Poojari, Y. and Clarson, S. J. (2013). Thermal
stability of Candida antarctica lipase b immobilized on macroporous
acrylic resin particles in organic media. Biocatalysis
and Agricultural Biotechnology, 2: 7 – 11.
15.
Tamalampudi,
S., Talukder, M., Hama, S., Numata, T., Kondo, A. and Fukuda, H. (2007).
Development of recombinant Aspergillus oryzae whole-cell biocatalyst expressing
lipase-encoding gene from Candida antarctica. Applied Microbiology and Biotechnology, 75: 387 – 395.
16.
Adachia, D., Hamab,
S., Nakashimac, K., Bogakie, T., Oginoa,
C. and Kondoa, A.
(2013). Production of biodiesel from plant oil hydrolysates using an
Aspergillus oryzae whole-cell biocatalyst highly expressing Candida
antarctica lipase b. Bioresource
Technology,
135: 410 – 416.
17.
Marco,
K., Geraldine, S. L., Abirami, S. and Ping, W. (2011). On the different roles
of anions and cations in the solvation of enzymes in ionic liquids. Physical Chemistry, 13: 1649 – 1662.
18.
Fontana,
J. D., Zagonel, G., Vechiatto, W.
W., Costa, B. J., Laurindo, J.
C., Fontana, R., Pelisson, L.,
Jorge, B. H. and Lanças, F. M. (2009). Simple
TLC-screening of acylglycerol levels in biodiesel as an alternative to GC
determination. Journal of Chromatographic
Sciences, 47: 844 – 846.
19.
Fuchsa, B., Süßa, R., Kristin, T. K., Eibischa, M. and Schillera, J.
(2011). Lipid analysis by thin-layer chromatography - A review of the current
state. Journal of Chromatography A,
1218(19): 2754 – 2774
20.
Fedosova, S. N., Braskb, J. and Xua,
X. (2011). Analysis of biodiesel conversion using thin layer chromatography and
nonlinear calibration curves. Journal of
Chromatography A, 1218: 2785 – 2792.
21.
Myller
S. C., Márcio A. M., David M. M. P., Inês, S. R. and Paulo, A. Z. S. (2012).
Chromatographic analyses of fatty acid methyl esters by HPLC-UV and GC-FID. Journal of the Brazilian Chemical Society,
23: 763 – 769.