Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1498 - 1509
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-31
POLYANILINE MULTI-COATED ONTO POLYVINYLIDENE FLUORIDE
AND SILICON ELASTOMER FOR PRESSURE FILTRATION MEMBRANES
(Polianilin
Multi-Lapis Bersalut pada Polivinilidin Fluorida dan Elastomer Silikon untuk Membran
Penurasan Bertekanan)
Fatimah Ibrahim,
Rosiah Rohani*, Abdul Wahab Mohammad
Department of Chemical and Process
Engineering,
Faculty of
Engineering & Built Environment,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: rosiah@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
In
this study, silicone rubbers were used to achieve the desire absorbing
properties of PANI onto polyvinylidene fluoride (PVDF) microporous support.
Poly (methyl-vinyl ether-alt-maleic acid) (PMVEA) polymeric acid was used as
acid dopant to enhance the membrane filtration performance. Initially PVDF
micro-porous support was dip-coated with silicone rubber elastomer solution
followed by deposition with PANI by in-situ
chemical oxidative polymerisation techniques using two-compartment cell in
presence of PMVEA and ammonium persulfate as the oxidizing agent. The PANI
multilayer composite membranes were characterized by gravimetric for PANI
content measurement namely Scanning Electron Microscope (SEM), Fourier-Transform
Infrared (FTIR), Differential Scanning Calorimetry (DSC) and contact angle. The
PANI content was found to be more than 30 %. SEM, FTIR and DSC analysis have
confirmed the presence of PANI onto the multilayers membrane while the contact angle of
the membrane in presence of high loading PANI was 0 o indicating the
super hydrophilicity than without the PANI presence of 78.8 o. The
pressure filtration of PANI multilayer composite filtration membrane with a
range of polyethylene glycols at different molecular weights was obtained based
on the high flux up to 904.11 L/m2.h and reasonable molecular weight cut off of
below 20,000 g/mol were obtained for the synthesized membrane.
Keywords: polyaniline, silicone elastomer,
polyvinylidene fluoride, chemical oxidative polymerisation, polymeric acid
Abstrak
Melaui
kajian ini, getah silikon telah digunakan untuk mencapai keinginan menyerap sifat-sifat
PANI ke polivinilidin fluorida (PVDF) sokongan mikrobeliang. Poli (vinil
metil-eter-alt-asid malik) (PMVEA) asid polimer digunakan sebagai asid pendopan
untuk meningkatkan prestasi penapisan membran. Pada mulanya mikro-berliang
sokongan PVDF telah disalut dengan larutan elastomer getah silikon diikuti
dengan pemendapan PANI oleh teknik pempolimeran kimia oksidatif sel in-situ menggunakan dua bahagian sel
dengan kehadiran PMVEA dan ammonium persulfat sebagai agen pengoksidaan.
Membran komposit PANI multilapis telah dicirikan secara gravimetrik untuk
mengukur kandungan PANI, seperti Mikroskop Imbasan Elektron (SEM), Inframerah Transformasi
Fourier (FTIR), kalorimeter pengimbasan pembezaan (DSC) dan sudut sentuhan.
Kandungan PANI didapati melebihi 30%. Analsis SEM, FTIR dan DSC telah
mengesahkan kehadiran PANI pada membran PANI multilapisan manakala sudut sentuhan membran dengan
kehadrian PANI yang tinggi adalah 0 ° menunjukkan keadaan super hidrofilik
berbanding tanpa kehadiran PANI adalah 78.8 °. Tekanan penapisan membran
komposit PANI multilapis dengan pelbagai julat polietilena glikol pada berat
molekul yang berbeza telah diperolehi berdasarkan fluks yang tinggi sehingga
904.11 L/m2.h dan berat molekul yang munasabah iaitu di bawah 20.000 g/mol bagi
membran yang telah di sintesis.
Kata kunci: polianilin, elastomer silikon, polivinilidin
fluorida, pempolimeran oksidatif kimia, asid polimer
References
1. Montazami, R.,
Jain, V. and Heflin, J. R. (2010). High contrast asymmetric solid state
electrochromic devices based on layer-by-layer deposition of polyaniline and
poly (aniline sulfonic acid). Electrochimica
Acta, 56(2): 990 – 994.
2. Abdolahi, A.,
Hamzah, E., Ibrahim, Z. and Hashim, S. (2012). Synthesis of uniform polyaniline
nanofibers through interfacial polymerization. Materials, 5(8): 1487 – 1494.
3. Tokarský, J.,
Maixner, M., Peikertová, P., Kulhánková, L. and Burda, J. V. (2014). The IR and
Raman spectra of polyaniline adsorbed on the glass surface; comparison of
experimental, empirical force field, and quantum chemical results. European Polymer Journal, 57: 47 – 57.
4. Detsri, E. and
Dubas, S. T. (2009). Interfacial polymerization of water-soluble polyaniline
and its assembly using the layer-by-layer technique. Journal of Metals, Materials and Minerals, 19(1): 39 – 44.
5. Vivekanandan,
J., Ponnusamy, V., Mahudeswaran, A. and Vijayanand, P. S. (2011). Synthesis,
characterization and conductivity study of polyaniline prepared by chemical
oxidative and electrochemical methods. Archives
of Applied Science Research, 3(6): 147 – 153.
6. Qaiser, A. A. (2010). Electrochemical composite membranes based on
intrinsically conducting polymers synthesis and characterization. University of
Aucklannd: Auckland. pp. 1 – 192.
7. Supri, A. G.,
Ammar, Z., Yeon, A., Shakaff, M., Hassan, A., Noor, M. and Ahmad, P. (2012).
Enhancing conductive polymer performance using eggshell for ammonia sensor. Journal of Physical Science, 23(2): 73 –
83.
8. Guillen, G. R.
and Hoek, E. M. (2010). Development and testing of “smart” nanofiltration
membranes. University of California: Los
Angeles: pp 1 – 46.
9. Ali, Y., Kumar,
V., Sonkawade, R. G. and Dhaliwal, A. S. (2012). Fabrication of polyaniline
nanofibers by chronopotentiometry. Advance
Materials Letters, 3: 388 – 392.
10. Gomes, E. C. and
Oliveira, M. A. S. (2012). Chemical polymerization of aniline in hydrochloric
acid (HCl) and formic acid (HCOOH) media. Differences between the two
synthesized polyanilines. American
Journal of Polymer Science, 2(2): 5 – 13.
11. Saikia, P. J.
and Sarmah, P. C. (2011). Investigation of polyaniline thin film and Schottky
junction with aluminium for electrical and optical characterization. Materials Sciences and Applications,
2(8): 1022 –1026.
12. Sapurina, I. Y.
and Shishov, M. A. (2012). Oxidative polymerization of aniline: Molecular
synthesis of polyaniline and the formation of supramolecular structures.
Chapter in Book, Dr. Ailton De Souza Gomes (Ed.), InTech Publisher.
13. Tiwari, A. and
Singh, V. (2007). Synthesis and characterization of electrical conducting
chitosan-graft-polyaniline. Express
Polymer Letters, 1(5): 308 – 317.
14. Jelmy, E. J.,
Ramakrishnan, S., Devanathan, S., Rangarajan, M. and Kothurkar, N. K. (2013).
Optimization of the conductivity and yield of chemically synthesized
polyaniline using a design of experiments. Journal
of Applied Polymer Science, 130(2): 1047 – 1057.
15. Devi, M. G., Al
Omairi, K. A. S., Feroz, S. and Ali, S. M. (2013). Treatment of textile
industry effluent using multilayer thin films. International Journal of Engineering Research and Technology, 2
(7): 701 – 706.
16. Sagidullin, A.,
Meier-Haack, J. and Scheler, U. (2005). Water diffusion through asymmetric
polymer membranes and polyelectrolyte multilayers. Diffusion Fundamentals, 2: 131 – 132.
17. Ashraf, M. A.,
Maah, M. J., Qureshi, A. K., Gharibreza, M. and Yusoff, I. (2013). Synthetic
polymer composite membrane for the desalination of saline water. Desalination and Water Treatment,
51(16-18): 3650 – 3661.
18. Hassanien, A.
M., El-Hashash, M. A., Mekewi, M. A., Guirguis, D. B.and Ramadan, A. M. (2013).
Fabrication of polyvinyl alcohol/cellulose acetate (PVA/CA/PEG) antibacterial
membrane for potential water purification application. Hydrology: Current Research, 4: 146 – 152.
19. Ye, Z., Chen,
Y., Li, H., He, G. and Deng, M. (2005). Preparation of a novel
polysulfone/polyethylene oxide/silicone rubber multilayer composite membrane
for hydrogen–nitrogen separation. Materials
Chemistry and Physics, 94: 288 – 291.
20. Shieh, J. J. and
Chung, T. S. (2000). Cellulose nitrate-based multilayer composite membranes for
gas separation. Journal of Membrane
Science, 166: 259 – 269.
21. Chung, T-S.,
Shieh, J-J., Lau, W. W-Y., Srinivasan, M. P. and Paul, D. R. (1999).
Fabrication of multi-layer hollow fiber membranes for gas separation. Journal of Membrane Science, 152: 211 –
225.
22. Abu, S., Kim, Y.
H., Kim, C., Park, Y., Gopalan, A. I., Lee, K. P. and Choi, S. J. (2013).
Preparation and characterization of MWCNT-g-poly (aniline-co-DABSA)/Nafion®
nanocomposite membranes for direct methanol fuel cells. Bulletin of the Korean Chemical Society, 34(9): 2657 – 2662.
23. Amado, F. D. R.,
Gondran, E., Ferreira J. Z. Rodrigues M. A. S. and Ferreira C. A. (2004).
Synthesis and characterisation of high impact polystyrene/polyaniline composite
membranes for electrodialysis. Journal of
Membrane Science, 234(1-2): 139 – 145.
24. Blinova, N.V.
and Svec, F. (2012). Functionalized polyaniline-based composite membranes with
vastly improved performance for separation of carbon dioxide from methane. Journal of Membrane Science, 423 – 424: 514 – 521.
25. Zhu, J., Chen,
M., Qu, H., Zhang, X., Wei, H., Luo, Z. and Guo, Z. (2012). Interfacial
polymerized polyaniline/graphite oxide nanocomposites toward electrochemical
energy storage. Polymer, 53(25): 5953
– 5964.
26. Morari, C.,
Balan, I., Pintea, J., Chitanu, E. and Iordache, I. (2011). Electrical
conductivity and electromagnetic shielding effectiveness of silicone rubber
filled with ferrite and graphite powders. Progress
in Electromagnetics Research M,
21: 93 – 104.
27. Achalpurkar, M.
P., Kharul, U. K., Lohokare, H. R. and Karadkar, P. B. (2007). Gas permeation
in amine functionalized silicon rubber membranes. Separation and Purification Technology, 57(2): 304 –313.
28. Mohamed, F.,
Hasbullah, H., Jamian, W. N. R., Rani, A. R. A., Saman, M. F. K., Salleh, W. N.
H. W. and Ismail, A. F. (2015). Morphological investiggation of poly(lactic
acid) asymmetric membrane. Journal of
Engineering Science and Technology: 1 – 8.
29. Saritha Chandran
A. (2008). Polaniline coated short nylon fiber/elastromer composites:
electrical and microwave characteristic, Thesis in Faculty of Technology,
Cochin University of Science and Technology: Kerala, India.
30. Matsuura, T.
(1993). Synthetic membranes and membrane separation processes. CRC press.
31. Zhang, L., Peng,
H., Sui, J., Kilmartin, P. A. and Travas-Sejdic, J. (2008). Polyaniline
nanotubes doped with polymeric acids. Current
Applied Physics, 8(3): 312 – 315.
32. Strathmann, H.
(2011). Introduction to membrane science and technology. Wiley-VCH verlag &
Co, Germany.
33. Rohani, R.,
Hyland, M. and Patterson, D. (2011). A refined one-filtration method for
aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off
determination using polyethylene glycols. Journal
of Membrane Science, 382(1): 278 – 290.
34. Kang, S. H. and
Chang, Y. K. (2005). Removal of organic acid salts from simulated fermentation
broth containing succinate by nanofiltration. Journal of Membrane Science, 246(1): 49 – 57.
35. Yilmaz, F.
(2007). Polyaniline: synthesis, charaterization, solution properties and
composites, Thesis Polymer Science and Technology, School of Natural and
Applied Sciences.
36. Jaleh, B.,
Gavary, N., Fakhri, P., Muensit, N. and Taheri, S. M. (2015). Characteristics
of PVDF membranes irradiated by electron beam. Membranes, 5(1): 1 – 10.
37. Alam, J., Dass,
L. A., Alhoshan, M. S., Ghasemi, M. and Mohammad, A. W. (2012). Development of
polyaniline-modified polysulfone nanocomposite membrane. Applied Water Science, 2(1): 37 – 46.
38. Iyoda, T.,
Ohtani, A., Honda, K., & Shimidzu, T. (1990). Diaphragmatic chemical
polymerization of pyrrole in the Nafion film. Macromolecules, 23(7): 1971 – 1976.
39. Pud, A.,
Ogurtsov, N., Korzhenko, A. and Shapoval, G. (2003). Some aspects of
preparation methods and properties of polyaniline blends and composites with
organic polymers. Progress in Polymer
Science, 28(12): 1701 – 1753.
40. Sung, W. B. and
Im Seung, S. (1998). Physical properties and doping characteristics of
polyaniline-nylon 6 composite films. Polymer,
39(2): 485 – 489.
41. Sironi, A.,
Marinotto, D., Riccardi, C., Zanini, S., Guerrini, E., Della Pina, C. and
Falletta, E. (2015). Effect of salicylic acid and 5-sulfosalicylic acid on
UV-Vis spectroscopic characteristics, morphology, and contact angles of spin
coated polyaniline and poly (4-aminodiphenylaniline) thin films. Journal of Spectroscopy, 2015: 1 – 8.
42. Zhang, X., Zhu,
J., Haldolaarachchige, N., Ryu, J., Young, D. P., Wei, S. and Guo, Z. (2012).
Synthetic process engineered polyaniline nanostructures with tunable morphology
and physical properties. Polymer, 53:
2109 – 2120.
43. Zhang, X.,
Chan-Yu-King, R., Jose, A. and Manohar, S. K. (2004). Nanofibers of polyaniline
synthesized by interfacial polymerization. Synthetic
Metals, 145(1): 23 – 29.