Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1498 - 1509

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-31

 

 

 

POLYANILINE MULTI-COATED ONTO POLYVINYLIDENE FLUORIDE AND SILICON ELASTOMER FOR PRESSURE FILTRATION  MEMBRANES

 

(Polianilin Multi-Lapis Bersalut pada Polivinilidin Fluorida dan Elastomer Silikon untuk Membran Penurasan Bertekanan)

 

Fatimah Ibrahim, Rosiah Rohani*, Abdul Wahab Mohammad

 

Department of Chemical and Process Engineering,

Faculty of Engineering & Built Environment,

 Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: rosiah@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

In this study, silicone rubbers were used to achieve the desire absorbing properties of PANI onto polyvinylidene fluoride (PVDF) microporous support. Poly (methyl-vinyl ether-alt-maleic acid) (PMVEA) polymeric acid was used as acid dopant to enhance the membrane filtration performance. Initially PVDF micro-porous support was dip-coated with silicone rubber elastomer solution followed by deposition with PANI by in-situ chemical oxidative polymerisation techniques using two-compartment cell in presence of PMVEA and ammonium persulfate as the oxidizing agent. The PANI multilayer composite membranes were characterized by gravimetric for PANI content measurement namely Scanning Electron Microscope (SEM), Fourier-Transform Infrared (FTIR), Differential Scanning Calorimetry (DSC) and contact angle. The PANI content was found to be more than 30 %. SEM, FTIR and DSC analysis have confirmed the presence of PANI onto the multilayers membrane while the contact angle of the membrane in presence of high loading PANI was 0 o indicating the super hydrophilicity than without the PANI presence of 78.8 o. The pressure filtration of PANI multilayer composite filtration membrane with a range of polyethylene glycols at different molecular weights was obtained based on the high flux up to 904.11 L/m2.h and reasonable molecular weight cut off of below 20,000 g/mol were obtained for the synthesized membrane.

 

Keywords:  polyaniline, silicone elastomer, polyvinylidene fluoride, chemical oxidative polymerisation, polymeric acid

 

Abstrak

Melaui kajian ini, getah silikon telah digunakan untuk mencapai keinginan menyerap sifat-sifat PANI ke polivinilidin fluorida (PVDF) sokongan mikrobeliang. Poli (vinil metil-eter-alt-asid malik) (PMVEA) asid polimer digunakan sebagai asid pendopan untuk meningkatkan prestasi penapisan membran. Pada mulanya mikro-berliang sokongan PVDF telah disalut dengan larutan elastomer getah silikon diikuti dengan pemendapan PANI oleh teknik pempolimeran kimia oksidatif sel in-situ menggunakan dua bahagian sel dengan kehadiran PMVEA dan ammonium persulfat sebagai agen pengoksidaan. Membran komposit PANI multilapis telah dicirikan secara gravimetrik untuk mengukur kandungan PANI, seperti Mikroskop Imbasan Elektron (SEM), Inframerah Transformasi Fourier (FTIR), kalorimeter pengimbasan pembezaan (DSC) dan sudut sentuhan. Kandungan PANI didapati melebihi 30%. Analsis SEM, FTIR dan DSC telah mengesahkan kehadiran PANI pada membran PANI multilapisan manakala sudut sentuhan membran dengan kehadrian PANI yang tinggi adalah 0 ° menunjukkan keadaan super hidrofilik berbanding tanpa kehadiran PANI adalah 78.8 °. Tekanan penapisan membran komposit PANI multilapis dengan pelbagai julat polietilena glikol pada berat molekul yang berbeza telah diperolehi berdasarkan fluks yang tinggi sehingga 904.11 L/m2.h dan berat molekul yang munasabah iaitu di bawah 20.000 g/mol bagi membran yang telah di sintesis.

 

Kata kunci:  polianilin, elastomer silikon, polivinilidin fluorida, pempolimeran oksidatif kimia, asid polimer

 

References

1.       Montazami, R., Jain, V. and Heflin, J. R. (2010). High contrast asymmetric solid state electrochromic devices based on layer-by-layer deposition of polyaniline and poly (aniline sulfonic acid). Electrochimica Acta, 56(2): 990 – 994.

2.       Abdolahi, A., Hamzah, E., Ibrahim, Z. and Hashim, S. (2012). Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials, 5(8): 1487 – 1494.

3.       Tokarský, J., Maixner, M., Peikertová, P., Kulhánková, L. and Burda, J. V. (2014). The IR and Raman spectra of polyaniline adsorbed on the glass surface; comparison of experimental, empirical force field, and quantum chemical results. European Polymer Journal, 57: 47 – 57.

4.       Detsri, E. and Dubas, S. T. (2009). Interfacial polymerization of water-soluble polyaniline and its assembly using the layer-by-layer technique. Journal of Metals, Materials and Minerals, 19(1): 39 – 44.

5.       Vivekanandan, J., Ponnusamy, V., Mahudeswaran, A. and Vijayanand, P. S. (2011). Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Archives of Applied Science Research, 3(6): 147 – 153.

6.       Qaiser, A. A. (2010). Electrochemical composite membranes based on intrinsically conducting polymers synthesis and characterization. University of Aucklannd: Auckland. pp. 1 – 192.

7.       Supri, A. G., Ammar, Z., Yeon, A., Shakaff, M., Hassan, A., Noor, M. and Ahmad, P. (2012). Enhancing conductive polymer performance using eggshell for ammonia sensor. Journal of Physical Science, 23(2): 73 – 83.

8.       Guillen, G. R. and Hoek, E. M. (2010). Development and testing of “smart” nanofiltration membranes. University of California: Los Angeles: pp 1 – 46.

9.       Ali, Y., Kumar, V., Sonkawade, R. G. and Dhaliwal, A. S. (2012). Fabrication of polyaniline nanofibers by chronopotentiometry. Advance Materials Letters, 3: 388 – 392.

10.    Gomes, E. C. and Oliveira, M. A. S. (2012). Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. American Journal of Polymer Science, 2(2): 5 – 13.

11.    Saikia, P. J. and Sarmah, P. C. (2011). Investigation of polyaniline thin film and Schottky junction with aluminium for electrical and optical characterization. Materials Sciences and Applications, 2(8): 1022 –1026.

12.    Sapurina, I. Y. and Shishov, M. A. (2012). Oxidative polymerization of aniline: Molecular synthesis of polyaniline and the formation of supramolecular structures. Chapter in Book, Dr. Ailton De Souza Gomes (Ed.), InTech Publisher.

13.    Tiwari, A. and Singh, V. (2007). Synthesis and characterization of electrical conducting chitosan-graft-polyaniline. Express Polymer Letters, 1(5): 308 – 317.

14.    Jelmy, E. J., Ramakrishnan, S., Devanathan, S., Rangarajan, M. and Kothurkar, N. K. (2013). Optimization of the conductivity and yield of chemically synthesized polyaniline using a design of experiments. Journal of Applied Polymer Science, 130(2): 1047 – 1057.

15.    Devi, M. G., Al Omairi, K. A. S., Feroz, S. and Ali, S. M. (2013). Treatment of textile industry effluent using multilayer thin films. International Journal of Engineering Research and Technology, 2 (7): 701 – 706.

16.    Sagidullin, A., Meier-Haack, J. and Scheler, U. (2005). Water diffusion through asymmetric polymer membranes and polyelectrolyte multilayers. Diffusion Fundamentals, 2: 131 – 132.

17.    Ashraf, M. A., Maah, M. J., Qureshi, A. K., Gharibreza, M. and Yusoff, I. (2013). Synthetic polymer composite membrane for the desalination of saline water. Desalination and Water Treatment, 51(16-18): 3650 – 3661.

18.    Hassanien, A. M., El-Hashash, M. A., Mekewi, M. A., Guirguis, D. B.and Ramadan, A. M. (2013). Fabrication of polyvinyl alcohol/cellulose acetate (PVA/CA/PEG) antibacterial membrane for potential water purification application. Hydrology: Current Research, 4: 146 – 152.

19.    Ye, Z., Chen, Y., Li, H., He, G. and Deng, M. (2005). Preparation of a novel polysulfone/polyethylene oxide/silicone rubber multilayer composite membrane for hydrogen–nitrogen separation. Materials Chemistry and Physics, 94: 288 – 291.

20.    Shieh, J. J. and Chung, T. S. (2000). Cellulose nitrate-based multilayer composite membranes for gas separation. Journal of Membrane Science, 166: 259 – 269.

21.    Chung, T-S., Shieh, J-J., Lau, W. W-Y., Srinivasan, M. P. and Paul, D. R. (1999). Fabrication of multi-layer hollow fiber membranes for gas separation. Journal of Membrane Science, 152: 211 – 225.

22.    Abu, S., Kim, Y. H., Kim, C., Park, Y., Gopalan, A. I., Lee, K. P. and Choi, S. J. (2013). Preparation and characterization of MWCNT-g-poly (aniline-co-DABSA)/Nafion® nanocomposite membranes for direct methanol fuel cells. Bulletin of the Korean Chemical Society, 34(9): 2657 – 2662.

23.    Amado, F. D. R., Gondran, E., Ferreira J. Z. Rodrigues M. A. S. and Ferreira C. A. (2004). Synthesis and characterisation of high impact polystyrene/polyaniline composite membranes for electrodialysis. Journal of Membrane Science, 234(1-2): 139 – 145.

24.    Blinova, N.V. and Svec, F. (2012). Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane. Journal of Membrane Science, 423 –  424: 514 – 521.

25.    Zhu, J., Chen, M., Qu, H., Zhang, X., Wei, H., Luo, Z. and Guo, Z. (2012). Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer, 53(25): 5953 – 5964.

26.    Morari, C., Balan, I., Pintea, J., Chitanu, E. and Iordache, I. (2011). Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders. Progress in Electromagnetics Research M, 21: 93 – 104.

27.    Achalpurkar, M. P., Kharul, U. K., Lohokare, H. R. and Karadkar, P. B. (2007). Gas permeation in amine functionalized silicon rubber membranes. Separation and Purification Technology, 57(2): 304 –313.

28.    Mohamed, F., Hasbullah, H., Jamian, W. N. R., Rani, A. R. A., Saman, M. F. K., Salleh, W. N. H. W. and Ismail, A. F. (2015). Morphological investiggation of poly(lactic acid) asymmetric membrane. Journal of Engineering Science and Technology: 1 – 8.

29.    Saritha Chandran A. (2008). Polaniline coated short nylon fiber/elastromer composites: electrical and microwave characteristic, Thesis in Faculty of Technology, Cochin University of Science and Technology: Kerala, India.

30.    Matsuura, T. (1993). Synthetic membranes and membrane separation processes. CRC press.

31.    Zhang, L., Peng, H., Sui, J., Kilmartin, P. A. and Travas-Sejdic, J. (2008). Polyaniline nanotubes doped with polymeric acids. Current Applied Physics, 8(3): 312 – 315.

32.    Strathmann, H. (2011). Introduction to membrane science and technology. Wiley-VCH verlag & Co, Germany.

33.    Rohani, R., Hyland, M. and Patterson, D. (2011). A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols. Journal of Membrane Science, 382(1): 278 – 290.

34.    Kang, S. H. and Chang, Y. K. (2005). Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. Journal of Membrane Science, 246(1): 49 – 57.

35.    Yilmaz, F. (2007). Polyaniline: synthesis, charaterization, solution properties and composites, Thesis Polymer Science and Technology, School of Natural and Applied Sciences.

36.    Jaleh, B., Gavary, N., Fakhri, P., Muensit, N. and Taheri, S. M. (2015). Characteristics of PVDF membranes irradiated by electron beam. Membranes, 5(1): 1 – 10.

37.    Alam, J., Dass, L. A., Alhoshan, M. S., Ghasemi, M. and Mohammad, A. W. (2012). Development of polyaniline-modified polysulfone nanocomposite membrane. Applied Water Science, 2(1): 37 – 46.

38.    Iyoda, T., Ohtani, A., Honda, K., & Shimidzu, T. (1990). Diaphragmatic chemical polymerization of pyrrole in the Nafion film. Macromolecules, 23(7): 1971 – 1976.

39.    Pud, A., Ogurtsov, N., Korzhenko, A. and Shapoval, G. (2003). Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers. Progress in Polymer Science, 28(12): 1701 – 1753.

40.    Sung, W. B. and Im Seung, S. (1998). Physical properties and doping characteristics of polyaniline-nylon 6 composite films. Polymer, 39(2): 485 – 489.

41.    Sironi, A., Marinotto, D., Riccardi, C., Zanini, S., Guerrini, E., Della Pina, C. and Falletta, E. (2015). Effect of salicylic acid and 5-sulfosalicylic acid on UV-Vis spectroscopic characteristics, morphology, and contact angles of spin coated polyaniline and poly (4-aminodiphenylaniline) thin films. Journal of Spectroscopy, 2015: 1 – 8.

42.    Zhang, X., Zhu, J., Haldolaarachchige, N., Ryu, J., Young, D. P., Wei, S. and Guo, Z. (2012). Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 53: 2109 – 2120.

43.    Zhang, X., Chan-Yu-King, R., Jose, A. and Manohar, S. K. (2004). Nanofibers of polyaniline synthesized by interfacial polymerization. Synthetic Metals, 145(1): 23 – 29.

 




Previous                    Content                    Next