Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1299 - 1310

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-08

 

 

 

ENHANCED REDUCIBILITY OF Mg-DOPED MoVTeNbOx MIXED OXIDE CATALYSTS FOR PROPANE OXIDATION REACTION

 

(Penambahbaikan Kebolehturunan Mangkin Mg-Terdop-MoVTeNbOx Terhadap Proses Pengoksidaan Propana)

 

Wong Hong Ren, Irmawati Ramli*, Taufiq Yap Yun Hin

 

Centre of Excellence for Catalysis Science and Technology,

Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: irmawati@upm.edu.my

 

 

Received: 17 August 2015; Accepted: 29 August 2016

 

 

Abstract

A series of magnesium-doped MoVTeNbOx (MVTN-Mg) catalysts, as well as undoped sample (MVTN) was prepared by microwave-assisted slurry method followed by calcination in nitrogen at 873 K for 2 hours. The catalysts were further post-treated in aqueous hydrogen peroxide. The physicochemical properties of the catalysts were investigated using X-ray diffraction (XRD), surface area measurement using Brunauer-Emmett-Teller (BET) method, Fourier Transform Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FESEM) which showed the formation of orthorhombic M1 phase, Te2M20O57 (M = Mo, V or Nb) when doped with Mg at a molar ratio of Mg/Mo of 0.06. Temperature Programmed Reduction in hydrogen (H2-TPR) results indicated the enhanced reducibility of the Mg doped catalysts as opposed to the undoped ones, signifying the apparent high activity of the catalyst.

 

Keywords:  magnesium, dopant, microwave-assisted slurry method, reducibility, propane oxidation

 

Abstrak

Mangkin MoVTeNbOx (MVTN) dan mangkin MoVTeNbOx yang didopkan magnesium (MVTN-Mg) telah dihasilkan melalui kaedah buburan berbantukan oleh penyinaran gelombang mikro. Prekursor telah dikalsinkan dalam nitrogen pada suhu 873 K and seterusnya dirawat dengan hidrogen peroksida. Sifat fisikokimia mangkin yang dikaji dengan menggunakan pembelauan sinar-X (XRD), pengukuran luas permukaan dengan kaedah Brunauer-Emmett-Teller (BET), spektroskopi inframerah transformasi Fourier (FTIR) dan medan elektron-mikroskopi imbasan elektron (FESEM) menunjukkan pembentukan fasa ortorombik M1, Te2M20O57 (M = Mo, V atau Nb) apabila mangkin didopkan magnesium dengan nisbah molar Mg/Mo adalah 0.06. Keputusan penurunan terprogram suhu dengan hidrogen (H2-TPR) mendedahkan penambahbaikan kebolehturunan mangkin Mg-MoVTeNbOx berbanding dengan mangkin tanpa dopan dan dengan demikian ini menandakan aktiviti mangkin yang tinggi.

 

Kata kunci:    magnesium, dopan, kaedah buburan dibantu oleh penyinaran gelombang mikro, kebolehturunan, pengoksidaan propana

 

References

1.       Ushikubo, T., Nakamura, H., Koyasu, Y. and Wajiki, S. (1997). US Patent 5,380,933 (1995). Mitsubishi Kasei Corporation.

2.       Popova, G. Y., Andrushkevich, T., Chesalov, Y. A., Plyasova, L., Dovlitova, L., Ischenko, E. and Khramov, M. (2009). Formation of active phases in MoVTeNb oxide catalysts for ammoxidation of propane. Catalysis Today, 144(3): 312 - 317.

3.       Amakawa, K., Kolen’ko, Y. V., Villa, A., Schuster, M. E., Csepei, L.-I., Weinberg, G. and Prati, L. (2013). Multifunctionality of crystalline MoV(TeNb) M1 oxide catalysts in selective oxidation of propane and benzyl alcohol. ACS Catalysis, 3(6): 1103 - 1113.

4.       Ushikubo, T., Oshima, K., Kayou, A. and Hatano, M. (1997). Ammoxidation of propane over Mo-V-Nb-Te mixed oxide catalysts. Studies in Surface Science and Catalysis, 112: 473 - 480.

5.       Asakura, K., Nakatani, K., Kubota, T. and Iwasawa, Y. (2000). Characterization and kinetic studies on the highly active ammoxidation catalyst MoVNbTeOx. Journal of Catalysis, 194(2): 309 - 317.

6.       Tsuji, H. and Koyasu, Y. (2002). Synthesis of MoVNbTe(Sb)Ox composite oxide catalysts via reduction of polyoxometalates in an aqueous medium. Journal of the American Chemical Society, 124(20): 5608 - 5609.

7.       Oliver, J., Nieto, J. L., Botella, P. and Mifsud, A. (2004). The effect of pH on structural and catalytic properties of MoVTeNbO catalysts. Applied Catalysis A: General, 257(1): 67 - 76.

8.       Grasselli, R. K., Burrington, J. D., Buttrey, D. J., DeSanto Jr, P., Lugmair, C. G., Volpe Jr, A. F. and Weingand, T. (2003). Multifunctionality of active centers in (amm) oxidation catalysts: from Bi–Mo–O x to Mo–V–Nb–(Te, Sb)–Ox. Topics in Catalysis, 23(1-4): 5 - 22.

9.       García-González, E., López Nieto, J., Botella, P. and González-Calbet, J. (2002). On the nature and structure of a new MoVTeO crystalline phase. Chemistry of Materials, 14(10): 4416 - 4421.

10.    Tsuji, H., Oshima, K. and Koyasu, Y. (2003). Synthesis of molybdenum and vanadium-based mixed oxide catalysts with metastable structure: Easy access to the MoVNbTe(Sb)Ox catalytically active structure using reductant and oxoacid. Chemistry of Materials, 15(11): 2112 - 2114.

11.    Ueda, W. and Oshihara, K. (2000). Selective oxidation of light alkanes over hydrothermally synthesized Mo-VMO (M= Al, Ga, Bi, Sb, and Te) oxide catalysts. Applied Catalysis A: General, 200(1), 135 - 143.

12.    Grasselli, R. K., Buttrey, D. J., DeSanto, P., Burrington, J. D., Lugmair, C. G., Volpe, A. F. and Weingand, T. (2004). Active centers in Mo–V–Nb–Te–O x (amm) oxidation catalysts. Catalysis Today, 91: 251 - 258.

13.    Grasselli, R. K. (2005). Selectivity issues in (amm) oxidation catalysis. Catalysis Today, 99(1): 23 - 31.

14.    Ueda, W., Vitry, D., Kato, T., Watanabe, N. and Endo, Y. (2006). Key aspects of crystalline Mo-VO-based catalysts active in the selective oxidation of propane. Research on Chemical Intermediates, 32(3): 217 - 233.

15.    Schacht, L., Navarrete, J., Schacht, P. and Ramírez, M. A. (2010). Influence of Vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane. Journal of the Mexican Chemical Society, 54(2): 69 - 73.

16.    Pless, J. D., Bardin, B. B., Kim, H.-S., Ko, D., Smith, M. T., Hammond, R. R. and Poeppelmeier, K. R. (2004). Catalytic oxidative dehydrogenation of propane over Mg–V/Mo oxides. Journal of Catalysis, 223(2): 419 - 431.

17.    Lee, K., Yoon, Y.-S., Ueda, W. and Moro-Oka, Y. (1997). An evidence of active surface MoOx over MgMoO4 for the catalytic oxidative dehydrogenation of propane. Catalysis Letters, 46(3-4): 267 - 271.

18.    Yoon, Y. S., Ueda, W. & Moro-oka, Y. (1995). Oxidative dehydrogenation of propane over magnesium molybdate catalysts. Catalysis Letters, 35(1-2): 57 - 64.

19.    Cadus, L., Gomez, M. and Abello, M. (1997). Synergy effects in the oxidative dehydrogenation of propane over MgMoO4-MoO3 catalysts. Catalysis Letters, 43(3-4): 229 - 233.

20.    Morales, E. and Lunsford, J. H. (1989). Oxidative dehydrogenation of ethane over a lithium-promoted magnesium oxide catalyst. Journal of Catalysis, 118(1): 255 - 265.

21.    Conway, S. J. and Lunsford, J. H. (1991). The oxidative dehydrogenation of ethane over chlorine-promoted lithium-magnesium oxide catalysts. Journal of Catalysis, 131(2): 513 - 522.

22.    Mahdavi, V. & Hasheminasab, H. R. (2015). Liquid-phase efficient oxidation of cyclohexane over cobalt promoted VPO catalyst using tert-butylhydroperoxide. Journal of the Taiwan Institute of Chemical Engineers, 51: 53 - 62.

23.    Ivars, F., Solsona, B., Botella, P., Soriano, M. and Nieto, J. L. (2009). Selective oxidation of propane over alkali-doped Mo–V–Sb–O catalysts. Catalysis Today, 141(3): 294 - 299.

24.    Botella, P., Concepción, P., Nieto, J. L. and Solsona, B. (2003). Effect of potassium doping on the catalytic behavior of Mo–V–Sb mixed oxide catalysts in the oxidation of propane to acrylic acid. Catalysis Letters, 89(3-4): 249 - 253.

25.    Ivars, F., Solsona, B., Soriano, M. and Nieto, J. L. (2008). Selective oxidation of propane over AMoVSbO catalysts (A= Li, Na, K, Rb or Cs). Topics in Catalysis, 50(1-4): 74 - 81.

26.    Ueda, W., Endo, Y. and Watanabe, N. (2006). K-doped Mo–V–Sb–O crystalline catalysts for propane selective oxidation to acrylic acid. Topics in Catalysis, 38(4), 261 - 268.

27.    Sanfiz, A. C., Hansen, T. W., Girgsdies, F., Timpe, O., Rödel, E., Ressler, T. and Schlögl, R. (2008). Preparation of phase-pure M1 MoVTeNb oxide catalysts by hydrothermal synthesis—influence of reaction parameters on structure and morphology. Topics in Catalysis, 50(1-4): 19 - 32.

28.    Vitry, D., Morikawa, Y., Dubois, J. and Ueda, W. (2003). Mo-V-Te-(Nb)-O mixed metal oxides prepared by hydrothermal synthesis for catalytic selective oxidations of propane and propene to acrylic acid. Applied Catalysis A: General, 251(2): 411 - 424.

29.    Lin, M. M. (2003). Complex metal-oxide catalysts for selective oxidation of propane and derivatives: I. Catalysts preparation and application in propane selective oxidation to acrylic acid. Applied Catalysis A: General, 250(2): 305 - 318.

30.    Tu, X., Furuta, N., Sumida, Y., Takahashi, M. and Niiduma, H. (2006). A new approach to the preparation of MoVNbTe mixed oxide catalysts for the oxidation of propane to acrylic acid. Catalysis Today, 117(1): 259 - 264.

31.    Irmawati, R., Ahmad Afandi, M., Ahmad Zaidi, I. and Hossein Abbastabar, A. (2011). Patent pending No. PI2011003855.

32.    Evans Jr, H. T. (1968). Refined molecular structure of the heptamolybdate and hexamolybdotellurate ions. Journal of the American Chemical Society, 90(12): 3275 - 3276.

33.    Sun, Y., Liu, J. and Wang, E. (1986). Preparation and properties of some new 6-heteropoly-tellurate compounds of tungsten and molybdenum containing vanadium. Inorganica Chimica Acta, 117(1): 23 - 26.

34.    Ratheesh, R., Suresh, G. and Nayar, V. (1995). Infrared and polarized raman spectra of M6 [TeMo6O24]·7H2O [M= K, NH4] and (NH4)6[TeMo6O24]·Te(OH)7H2O single crystals. Journal of Solid State Chemistry, 118(2): 341 - 356.

35.    Botto, I., Cabello, C. and Thomas, H. (1997). (NH4)6[TeMo6O24]·7H2O Anderson phase as precursor of the TeMo5O16 catalytic phase: thermal and spectroscopic studies. Materials Chemistry and Physics, 47(1): 37 - 45.

36.    Botella, P., Nieto, J. L. and Solsona, B. (2002). Selective oxidation of propene to acrolein on Mo-Te mixed oxides catalysts prepared from ammonium telluromolybdates. Journal of Molecular Catalysis A: Chemical, 184(1): 335 - 347.

37.    Nakamoto, K. (1970). Infrared spectra of inorganic and coordination compounds. 2nd Edition. Wiley Science, New York.

38.    Lin, M. M. (2003). Complex metal oxide catalysts for selective oxidation of propane and derivatives: II. The relationship among catalyst preparation, structure and catalytic properties. Applied Catalysis A: General, 250(2): 287 - 303.

39.    Deniau, B., Millet, J., Loridant, S., Christin, N. and Dubois, J. (2008). Effect of several cationic substitutions in the M1 active phase of the MoVTeNbO catalysts used for the oxidation of propane to acrylic acid. Journal of Catalysis, 260(1): 30 - 36.

40.    Ischenko, E., Andrushkevich, T., Popova, G. Y., Bondareva, V., Chesalov, Y., Kardash, T. Y. and Ischenko, A. (2010). Formation of active component of MoVTeNb oxide catalyst for selective oxidation and ammoxidation of propane and ethane. Studies in Surface Science and Catalysis, 175: 479 - 482.

41.    Popova, G. Y., Andrushkevich, T., Aleshina, G., Plyasova, L. and Khramov, M. (2007). Effect of oxalic acid content and medium of thermal treatment on physicochemical and catalytic properties of MoVTeNb oxide catalysts in propane ammoxidation. Applied Catalysis A: General, 328(2): 195 - 200.

42.    Magneli, A. (1953). Studies on the hexagonal tungsten bronzes of-potassium. Acta Chemica Scandinavica, 7: 315 - 324.

43.    Girgsdies, F., Schlögl, R. and Trunschke, A. (2012). In-situ X-ray diffraction study of phase crystallization from an amorphous MoVTeNb oxide catalyst precursor. Catalysis Communications, 18:  60 - 62.

44.    Murayama, H., Vitry, D., Ueda, W., Fuchs, G., Anne, M. and Dubois, J. (2007). Structure characterization of orthorhombic phase in MoVTeNbO catalyst by powder X-ray diffraction and XANES. Applied Catalysis A: General, 318: 137 - 142.

45.    Deniau, B., Bergeret, G., Jouguet, B., Dubois, J. and Millet, J. (2008). Preparation of single M1 phase MoVTe(Sb)NbO catalyst: Study of the effect of M2 phase dissolution on the structure and catalytic properties. Topics in Catalysis, 50(1-4): 33 - 42.

46.    Bart, J., Cariati, F. and Sgamellotti, A. (1979). Mixed-valence effects in tellurium-molybdenum oxides. Inorganica Chimica Acta, 36: 105 - 112.

47.    Bart, J., Petrini, G. and Giordano, N. (1975). Solidstate equilibrium relations in the Ternary Systems TeO2-MoO3-MoO2 and TeO2-MoO3-Te. Zeitschrift für anorganische und allgemeine Chemie, 413(2): 180 - 192.

48.    Botella, P., Nieto, J. L., Solsona, B., Mifsud, A. and Márquez, F. (2002). The preparation, characterization, and catalytic behavior of MoVTeNbO catalysts prepared by hydrothermal synthesis. Journal of Catalysis, 209(2): 445 - 455.

49.    Jiang, H., Lu, W. & Wan, H. (2004). The effect of MoV0.3Te0.23PxO n catalysts with different phosphorus content for selective oxidation of propane to acrolein. Journal of Molecular Catalysis A: Chemical, 208(1): 213 - 217.

50.    Pereira, E. B., Pereira, M. M., Lam, Y., Perez, C. A. and Schmal, M. (2000). Synthesis and characterization of niobium oxide layers on silica and the interaction with nickel. Applied Catalysis A: General, 197(1): 99 - 106.

51.    Ramli, I., Botella, P., Ivars, F., Meng, W. P., Zawawi, S. M. M., Ahangar, H. A. and Nieto, J. M. L. (2011). Reflux method as a novel route for the synthesis of MoVTeNbOx catalysts for selective oxidation of propane to acrylic acid. Journal of Molecular Catalysis A: Chemical, 342: 50 - 57.

 

 




Previous                    Content                    Next