Malaysian Journal of Analytical Sciences Vol 20 No 6
(2016): 1299 - 1310
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-08
ENHANCED
REDUCIBILITY OF Mg-DOPED MoVTeNbOx MIXED OXIDE CATALYSTS FOR PROPANE OXIDATION
REACTION
(Penambahbaikan Kebolehturunan Mangkin Mg-Terdop-MoVTeNbOx Terhadap Proses
Pengoksidaan Propana)
Wong Hong Ren,
Irmawati Ramli*, Taufiq Yap Yun Hin
Centre of
Excellence for Catalysis Science and Technology,
Department of Chemistry, Faculty of Science,
Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor, Malaysia
*Corresponding author: irmawati@upm.edu.my
Received: 17
August 2015; Accepted: 29 August 2016
Abstract
A series of magnesium-doped MoVTeNbOx (MVTN-Mg) catalysts, as well as undoped
sample (MVTN) was prepared by microwave-assisted slurry method followed by
calcination in nitrogen at 873 K for 2 hours. The catalysts were further
post-treated in aqueous hydrogen peroxide. The physicochemical properties of
the catalysts were investigated using X-ray diffraction (XRD), surface area
measurement using Brunauer-Emmett-Teller (BET) method, Fourier Transform
Infrared (FTIR) and Field Emission Scanning Electron Microscopy (FESEM) which
showed the formation of orthorhombic M1 phase, Te2M20O57 (M = Mo, V or Nb) when doped with Mg at a
molar ratio of Mg/Mo of 0.06. Temperature Programmed Reduction in hydrogen (H2-TPR)
results indicated the enhanced reducibility of the Mg doped catalysts as
opposed to the undoped ones, signifying the apparent high activity of the
catalyst.
Keywords: magnesium, dopant, microwave-assisted slurry
method, reducibility, propane oxidation
Abstrak
Mangkin MoVTeNbOx (MVTN) dan mangkin MoVTeNbOx yang didopkan magnesium (MVTN-Mg)
telah dihasilkan melalui kaedah buburan berbantukan oleh penyinaran gelombang
mikro. Prekursor telah dikalsinkan dalam nitrogen pada suhu 873 K and
seterusnya dirawat dengan hidrogen peroksida. Sifat fisikokimia mangkin yang
dikaji dengan menggunakan pembelauan sinar-X (XRD), pengukuran luas permukaan dengan
kaedah Brunauer-Emmett-Teller (BET), spektroskopi inframerah transformasi Fourier
(FTIR) dan medan elektron-mikroskopi imbasan elektron (FESEM) menunjukkan
pembentukan fasa ortorombik M1, Te2M20O57 (M
= Mo, V atau Nb) apabila mangkin didopkan magnesium dengan nisbah molar Mg/Mo
adalah 0.06. Keputusan penurunan terprogram suhu dengan hidrogen (H2-TPR)
mendedahkan penambahbaikan kebolehturunan mangkin Mg-MoVTeNbOx berbanding
dengan mangkin tanpa dopan dan dengan demikian ini menandakan aktiviti mangkin
yang tinggi.
Kata kunci: magnesium,
dopan, kaedah buburan dibantu oleh penyinaran gelombang mikro, kebolehturunan,
pengoksidaan propana
References
1. Ushikubo, T., Nakamura, H., Koyasu, Y. and Wajiki, S. (1997).
US Patent 5,380,933 (1995). Mitsubishi
Kasei Corporation.
2.
Popova, G. Y., Andrushkevich,
T., Chesalov, Y. A., Plyasova, L., Dovlitova, L., Ischenko, E. and Khramov, M.
(2009). Formation of active phases in MoVTeNb oxide catalysts for ammoxidation
of propane. Catalysis Today, 144(3):
312 - 317.
3.
Amakawa, K.,
Kolen’ko, Y. V., Villa, A., Schuster, M. E., Csepei, L.-I., Weinberg, G. and
Prati, L. (2013). Multifunctionality of crystalline MoV(TeNb) M1 oxide
catalysts in selective oxidation of propane and benzyl alcohol. ACS Catalysis, 3(6): 1103 - 1113.
4.
Ushikubo, T.,
Oshima, K., Kayou, A. and Hatano, M. (1997). Ammoxidation of propane over
Mo-V-Nb-Te mixed oxide catalysts. Studies
in Surface Science and Catalysis, 112: 473 - 480.
5.
Asakura, K.,
Nakatani, K., Kubota, T. and Iwasawa, Y. (2000). Characterization and kinetic
studies on the highly active ammoxidation catalyst MoVNbTeOx. Journal of Catalysis, 194(2): 309 - 317.
6.
Tsuji, H. and
Koyasu, Y. (2002). Synthesis of MoVNbTe(Sb)Ox composite oxide catalysts via
reduction of polyoxometalates in an aqueous medium. Journal of the American Chemical Society, 124(20): 5608 - 5609.
7.
Oliver, J.,
Nieto, J. L., Botella, P. and Mifsud, A. (2004). The effect of pH on structural
and catalytic properties of MoVTeNbO catalysts. Applied Catalysis A: General, 257(1): 67 - 76.
8.
Grasselli, R.
K., Burrington, J. D., Buttrey, D. J., DeSanto Jr, P., Lugmair, C. G., Volpe
Jr, A. F. and Weingand, T. (2003). Multifunctionality of active centers in
(amm) oxidation catalysts: from Bi–Mo–O x to Mo–V–Nb–(Te, Sb)–Ox. Topics in Catalysis, 23(1-4): 5 - 22.
9.
García-González,
E., López Nieto, J., Botella, P. and González-Calbet, J. (2002). On the nature
and structure of a new MoVTeO crystalline phase. Chemistry of Materials, 14(10): 4416 - 4421.
10.
Tsuji, H.,
Oshima, K. and Koyasu, Y. (2003). Synthesis of molybdenum and vanadium-based
mixed oxide catalysts with metastable structure: Easy access to the
MoVNbTe(Sb)Ox catalytically active structure using reductant and oxoacid. Chemistry of Materials, 15(11): 2112 -
2114.
11.
Ueda, W. and
Oshihara, K. (2000). Selective oxidation of light alkanes over hydrothermally
synthesized Mo-VMO (M= Al, Ga, Bi, Sb, and Te) oxide catalysts. Applied Catalysis A: General, 200(1),
135 - 143.
12.
Grasselli, R.
K., Buttrey, D. J., DeSanto, P., Burrington, J. D., Lugmair, C. G., Volpe, A.
F. and Weingand, T. (2004). Active centers in Mo–V–Nb–Te–O x (amm) oxidation
catalysts. Catalysis Today, 91: 251 -
258.
13.
Grasselli, R. K.
(2005). Selectivity issues in (amm) oxidation catalysis. Catalysis Today, 99(1): 23 - 31.
14.
Ueda, W., Vitry,
D., Kato, T., Watanabe, N. and Endo, Y. (2006). Key aspects of crystalline
Mo-VO-based catalysts active in the selective oxidation of propane. Research on Chemical Intermediates, 32(3):
217 - 233.
15.
Schacht, L.,
Navarrete, J., Schacht, P. and Ramírez, M. A. (2010). Influence of Vanadium
oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the
oxidative dehydrogenation of propane. Journal
of the Mexican Chemical Society, 54(2): 69 - 73.
16.
Pless, J. D.,
Bardin, B. B., Kim, H.-S., Ko, D., Smith, M. T., Hammond, R. R. and
Poeppelmeier, K. R. (2004). Catalytic oxidative dehydrogenation of propane over
Mg–V/Mo oxides. Journal of Catalysis, 223(2):
419 - 431.
17.
Lee, K., Yoon,
Y.-S., Ueda, W. and Moro-Oka, Y. (1997). An evidence of active surface MoOx
over MgMoO4 for the catalytic oxidative dehydrogenation of propane. Catalysis Letters, 46(3-4): 267 - 271.
18.
Yoon, Y. S.,
Ueda, W. & Moro-oka, Y. (1995). Oxidative dehydrogenation of propane over
magnesium molybdate catalysts. Catalysis
Letters, 35(1-2): 57 - 64.
19.
Cadus, L.,
Gomez, M. and Abello, M. (1997). Synergy effects in the oxidative
dehydrogenation of propane over MgMoO4-MoO3 catalysts. Catalysis Letters, 43(3-4): 229 - 233.
20.
Morales, E. and
Lunsford, J. H. (1989). Oxidative dehydrogenation of ethane over a
lithium-promoted magnesium oxide catalyst. Journal
of Catalysis, 118(1): 255 - 265.
21.
Conway, S. J.
and Lunsford, J. H. (1991). The oxidative dehydrogenation of ethane over
chlorine-promoted lithium-magnesium oxide catalysts. Journal of Catalysis, 131(2): 513 - 522.
22.
Mahdavi, V.
& Hasheminasab, H. R. (2015). Liquid-phase efficient oxidation of
cyclohexane over cobalt promoted VPO catalyst using tert-butylhydroperoxide. Journal of the Taiwan Institute of Chemical
Engineers, 51: 53 - 62.
23.
Ivars, F.,
Solsona, B., Botella, P., Soriano, M. and Nieto, J. L. (2009). Selective
oxidation of propane over alkali-doped Mo–V–Sb–O catalysts. Catalysis Today, 141(3): 294 - 299.
24.
Botella, P.,
Concepción, P., Nieto, J. L. and Solsona, B. (2003). Effect of potassium doping
on the catalytic behavior of Mo–V–Sb mixed oxide catalysts in the oxidation of
propane to acrylic acid. Catalysis
Letters, 89(3-4): 249 - 253.
25.
Ivars, F.,
Solsona, B., Soriano, M. and Nieto, J. L. (2008). Selective oxidation of
propane over AMoVSbO catalysts (A= Li, Na, K, Rb or Cs). Topics in Catalysis, 50(1-4): 74 - 81.
26.
Ueda, W., Endo,
Y. and Watanabe, N. (2006). K-doped Mo–V–Sb–O crystalline catalysts for propane
selective oxidation to acrylic acid. Topics
in Catalysis, 38(4), 261 - 268.
27.
Sanfiz, A. C.,
Hansen, T. W., Girgsdies, F., Timpe, O., Rödel, E., Ressler, T. and Schlögl, R.
(2008). Preparation of phase-pure M1 MoVTeNb oxide catalysts by hydrothermal
synthesis—influence of reaction parameters on structure and morphology. Topics in Catalysis, 50(1-4): 19 - 32.
28.
Vitry, D.,
Morikawa, Y., Dubois, J. and Ueda, W. (2003). Mo-V-Te-(Nb)-O mixed metal oxides
prepared by hydrothermal synthesis for catalytic selective oxidations of propane
and propene to acrylic acid. Applied
Catalysis A: General, 251(2): 411 - 424.
29.
Lin, M. M.
(2003). Complex metal-oxide catalysts for selective oxidation of propane and
derivatives: I. Catalysts preparation and application in propane selective oxidation
to acrylic acid. Applied Catalysis A:
General, 250(2): 305 - 318.
30.
Tu, X., Furuta,
N., Sumida, Y., Takahashi, M. and Niiduma, H. (2006). A new approach to the
preparation of MoVNbTe mixed oxide catalysts for the oxidation of propane to
acrylic acid. Catalysis Today, 117(1):
259 - 264.
31.
Irmawati, R.,
Ahmad Afandi, M., Ahmad Zaidi, I. and Hossein Abbastabar, A. (2011). Patent pending No. PI2011003855.
32.
Evans Jr, H. T.
(1968). Refined molecular structure of the heptamolybdate and hexamolybdotellurate
ions. Journal of the American Chemical
Society, 90(12): 3275 - 3276.
33.
Sun, Y., Liu, J.
and Wang, E. (1986). Preparation and properties of some new
6-heteropoly-tellurate compounds of tungsten and molybdenum containing
vanadium. Inorganica Chimica Acta,
117(1): 23 - 26.
34.
Ratheesh, R.,
Suresh, G. and Nayar, V. (1995). Infrared and polarized raman spectra of M6
[TeMo6O24]·7H2O [M= K, NH4] and (NH4)6[TeMo6O24]·Te(OH)6·7H2O
single crystals. Journal of Solid State
Chemistry, 118(2): 341 - 356.
35.
Botto, I.,
Cabello, C. and Thomas, H. (1997). (NH4)6[TeMo6O24]·7H2O
Anderson phase as precursor of the TeMo5O16 catalytic
phase: thermal and spectroscopic studies. Materials
Chemistry and Physics, 47(1): 37 - 45.
36.
Botella, P.,
Nieto, J. L. and Solsona, B. (2002). Selective oxidation of propene to acrolein
on Mo-Te mixed oxides catalysts prepared from ammonium telluromolybdates. Journal of Molecular Catalysis A: Chemical, 184(1):
335 - 347.
37.
Nakamoto, K.
(1970). Infrared spectra of inorganic and coordination compounds. 2nd
Edition. Wiley Science, New York.
38.
Lin, M. M.
(2003). Complex metal oxide catalysts for selective oxidation of propane and
derivatives: II. The relationship among catalyst preparation, structure and
catalytic properties. Applied Catalysis
A: General, 250(2): 287 - 303.
39.
Deniau, B.,
Millet, J., Loridant, S., Christin, N. and Dubois, J. (2008). Effect of several
cationic substitutions in the M1 active phase of the MoVTeNbO catalysts used
for the oxidation of propane to acrylic acid. Journal of Catalysis, 260(1): 30 - 36.
40.
Ischenko, E.,
Andrushkevich, T., Popova, G. Y., Bondareva, V., Chesalov, Y., Kardash, T. Y.
and Ischenko, A. (2010). Formation of active component of MoVTeNb oxide
catalyst for selective oxidation and ammoxidation of propane and ethane. Studies in Surface Science and Catalysis, 175:
479 - 482.
41.
Popova, G. Y.,
Andrushkevich, T., Aleshina, G., Plyasova, L. and Khramov, M. (2007). Effect of
oxalic acid content and medium of thermal treatment on physicochemical and
catalytic properties of MoVTeNb oxide catalysts in propane ammoxidation. Applied Catalysis A: General, 328(2):
195 - 200.
42.
Magneli, A.
(1953). Studies on the hexagonal tungsten bronzes of-potassium. Acta Chemica Scandinavica, 7: 315 - 324.
43.
Girgsdies, F.,
Schlögl, R. and Trunschke, A. (2012). In-situ X-ray diffraction study of phase
crystallization from an amorphous MoVTeNb oxide catalyst precursor. Catalysis Communications, 18: 60 - 62.
44.
Murayama, H.,
Vitry, D., Ueda, W., Fuchs, G., Anne, M. and Dubois, J. (2007). Structure
characterization of orthorhombic phase in MoVTeNbO catalyst by powder X-ray
diffraction and XANES. Applied Catalysis
A: General, 318: 137 - 142.
45.
Deniau, B.,
Bergeret, G., Jouguet, B., Dubois, J. and Millet, J. (2008). Preparation of
single M1 phase MoVTe(Sb)NbO catalyst: Study of the effect of M2 phase
dissolution on the structure and catalytic properties. Topics in Catalysis, 50(1-4): 33 - 42.
46.
Bart, J.,
Cariati, F. and Sgamellotti, A. (1979). Mixed-valence effects in
tellurium-molybdenum oxides. Inorganica
Chimica Acta, 36: 105 - 112.
47.
Bart, J.,
Petrini, G. and Giordano, N. (1975). Solid‐state
equilibrium relations in the Ternary Systems TeO2-MoO3-MoO2
and TeO2-MoO3-Te. Zeitschrift
für anorganische und allgemeine Chemie, 413(2): 180 - 192.
48.
Botella, P.,
Nieto, J. L., Solsona, B., Mifsud, A. and Márquez, F. (2002). The preparation,
characterization, and catalytic behavior of MoVTeNbO catalysts prepared by
hydrothermal synthesis. Journal of Catalysis,
209(2): 445 - 455.
49.
Jiang, H., Lu,
W. & Wan, H. (2004). The effect of MoV0.3Te0.23PxO
n catalysts with different phosphorus content for selective oxidation of
propane to acrolein. Journal of Molecular
Catalysis A: Chemical, 208(1): 213 - 217.
50.
Pereira, E. B.,
Pereira, M. M., Lam, Y., Perez, C. A. and Schmal, M. (2000). Synthesis and
characterization of niobium oxide layers on silica and the interaction with
nickel. Applied Catalysis A: General, 197(1):
99 - 106.
51.
Ramli, I.,
Botella, P., Ivars, F., Meng, W. P., Zawawi, S. M. M., Ahangar, H. A. and
Nieto, J. M. L. (2011). Reflux method as a novel route for the synthesis of
MoVTeNbOx catalysts for selective oxidation of propane to acrylic acid. Journal of Molecular Catalysis A: Chemical, 342:
50 - 57.