Malaysian
Journal of Analytical Sciences Vol 21 No 1 (2017): 119 - 126
DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-14
ROLE
OF ACTIVE CHROMIUM SPECIES ON DIFFERENT SUPPORT FOR DEHYDROGENATION OF PROPANE
(Peranan
Spesies Kromium Aktif pada Penyokong yang Berbeza dalam Tindak balas Penyahhidrogenan
Gas Propana)
Wan Nor Roslam
Wan Isahak1,2*, Zatil Amali Che Ramli2, Ibdal Satar2,
Mohamed Wahab Mohamed Hisham3,
Mohd Ambar Yarmo3
1Department of Chemical and Process Engineering, Faculty
of Engineering and Built Environment
2Fuel Cell Institute
3School of Chemical Sciences and Food Technology, Faculty
of Science and Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: wannorroslam@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Dehydrogenation of propane (DHP) was studied over a series
of Cr2O3–Al2O3 and Cr2O3-SiO2
catalysts, prepared by incipient wetness impregnation and sol gel (SG) method,
respectively, to gain a better understanding of the nature and distribution of
chromium (Cr) species and their catalytic function. To this end, the catalysts
were characterized by N2-physisorption and X-ray diffraction (XRD).
N2-physisorption analysis of Cr2O3-SiO2
showed the relatively higher surface area of 391.1 m2/g, compared
with Cr2O3-Al2O3 of 224.3 m2/g.
The combination method of sol gel and sonothermal also produced smaller
particles size of catalyst with higher microporosity of 23.5% and smaller pores
size of 6 nm. The good surface properties of Cr2O3-SiO2
enabled the high conversion of propane of 55% at 550 °C. At higher temperature
of 600 °C, the Cr species might be reduced into lower oxidation state and
inhibit the catalytic behavior to produce hydrogen.
Keywords: chromium
(II) oxide, thermodynamic consideration, sonothermal, catalytic behavior,
hydrogen energy
Abstrak
Tindak balas penyah-hidrogenan gas
propana (DPP) telah dikaji menggunakan beberapa siri mangkin Cr2O3–Al2O3
dan Cr2O3-SiO2 yang dihasilkan melalui kaedah
impregnasi basah dan sol gel (SG) method, untuk memahami sifat dan serakan
spesies logam Cr dan fungsi pemangkinannya. Dalam kajian ini, mangkin diciri
menggunakan kaedah jerapan gas N2 dan pembelauan sinar X (XRD). Analisis
jerapan N2 bagi mangkin Cr2O3-SiO2
menunjukkan ia mempunyai luas permukaan yang paling tinggi sebanyak 391.1 m2/g,
berbanding mangkin Cr2O3-Al2O3
sebanyak 224.3 m2/g. Kombinasi kaedah sol gel (SG) dan sonotermal
menghasilkan mangkin yang bersaiz lebih kecil dengan keporosan mikro sebanyak
23.5% dan saiz liang sebanyak 6 nm. Ciri-ciri permukaan yang baik ditunjukkan
oleh mangkin Cr2O3-SiO2 menyumbang kepada
aktiviti tindak balas yang baik dengan peratus penukaran propana yang tinggi
sebanyak 55% pada suhu 550 °C. Pada suhu tindak balas 600 °C pula, spesies
logam Cr boleh terturun kepada keadaan pengoksidaan yang lebih rendah dan
merencat tindak balas pemangkin bagi menghasilkan gas hidrogen sebagai produk
utama.
Kata kunci: kromium
(II) oksida, pendekatan termodinamik, sonotermal, sifat pemangkinan, tenaga hidrogen
References
1.
Caspary, K. J., Gehrke, H., Heinritz-Adrian,
M. and Schwefer, M. (2008). Handbook of heterogeneous catalysis. Chapter 14:
Dehydrogenation of alkanes. John Wiley & Sons.
2.
Sattler,
J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E. and Weckhuysen, B. M. (2014).
Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 114 (20): 10613 –10653.
3.
Lee, M-H., Nagaraja, B. M., Lee, K. Y. and Jung, K. D. (2014).
Dehydrogenation of alkane to light olefin over PtSn/Al2O3
catalyst: Effects of Sn loading. Catalysis
Today, 232: 53 – 62.
4.
Wagman,
D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M.,
Churney, K. L. and Nutall, R. L. (1989). The NBS
tables of chemical thermodynamic properties selected values for inorganic and
C1 and C2 organic substance in SI units. Journal of Physical Chemistry Reference Data, 11 (2): 1807.
5.
Isahak, W. N. R. W., Ramli, Z. A. C.,
Ismail, M. W., Ismail, K., Yusop, R. M., Hisham, M. W. M. and Yarmo, M. A. (2013). Adsorption–desorption of CO2 on different type of
copper oxides surfaces: Physical and chemical attractions studies. Journal of CO2
Utilization, 2: 8 – 15.
6.
Brunauer, S., Emmett, P. H. and Teller, E. (1938).
Adsorption of gasses in multimolecular layers. Journal
of the American Chemical Society, 60: 309 – 316.
7.
Rouquerol, J., Avnir, D.,
Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D. F.,
Sing, K. S. W. and Unger, K. K. (1994). IUPAC Recommendations for the
characterization of porous solids. Pure and
Applied Chemistry, 66: 1739 – 1758.
8.
Kumar, M. S., Hammer, N., Rønning,
M., Holmen, A., Chena, D., Walmsley, J. C. and Øye, G. (2009). The nature of
active chromium species in Cr-catalysts for dehydrogenation of propane: New
insights by a comprehensive spectroscopic study. Journal of Catalysis, 261 (1): 116 – 128.
9.
Karapet’yants, M. K. and Karapet’yants, M. L. (1970). Thermodynamic constants
of inorganic and organic compounds. Ann
Arbor-Humphrey Science Publishers.
10.
Zeng, G., Tian, Y. and Li, Y. (2010). Thermodynamic analysis of hydrogen production
for fuel cell via oxidative steam reforming of propane. International
Journal of Hydrogen Energy, 35 (13): 6726 –6737.
11.
Albright, L. F., Crynes, B. L. and Corcoran, W. H. (1983). Pyrolysis: Theory and industrial practice New York: Academic Press.