Malaysian Journal of Analytical Sciences Vol 21 No 1 (2017): 119 - 126

DOI: http://dx.doi.org/10.17576/mjas-2017-2101-14

 

 

 

ROLE OF ACTIVE CHROMIUM SPECIES ON DIFFERENT SUPPORT FOR DEHYDROGENATION OF PROPANE

 

(Peranan Spesies Kromium Aktif pada Penyokong yang Berbeza dalam Tindak balas Penyahhidrogenan Gas Propana)

 

Wan Nor Roslam Wan Isahak1,2*, Zatil Amali Che Ramli2, Ibdal Satar2, Mohamed Wahab Mohamed Hisham3,

Mohd Ambar Yarmo3

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

2Fuel Cell Institute

3School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: wannorroslam@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Dehydrogenation of propane (DHP) was studied over a series of Cr2O3–Al2O3 and Cr2O3-SiO2 catalysts, prepared by incipient wetness impregnation and sol gel (SG) method, respectively, to gain a better understanding of the nature and distribution of chromium (Cr) species and their catalytic function. To this end, the catalysts were characterized by N2-physisorption and X-ray diffraction (XRD). N2-physisorption analysis of Cr2O3-SiO2 showed the relatively higher surface area of 391.1 m2/g, compared with Cr2O3-Al2O3 of 224.3 m2/g. The combination method of sol gel and sonothermal also produced smaller particles size of catalyst with higher microporosity of 23.5% and smaller pores size of 6 nm. The good surface properties of Cr2O3-SiO2 enabled the high conversion of propane of 55% at 550 °C. At higher temperature of 600 °C, the Cr species might be reduced into lower oxidation state and inhibit the catalytic behavior to produce hydrogen.

 

Keywords:  chromium (II) oxide, thermodynamic consideration, sonothermal, catalytic behavior, hydrogen energy

 

Abstrak

Tindak balas penyah-hidrogenan gas propana (DPP) telah dikaji menggunakan beberapa siri mangkin Cr2O3–Al2O3 dan Cr2O3-SiO2 yang dihasilkan melalui kaedah impregnasi basah dan sol gel (SG) method, untuk memahami sifat dan serakan spesies logam Cr dan fungsi pemangkinannya. Dalam kajian ini, mangkin diciri menggunakan kaedah jerapan gas N2 dan pembelauan sinar X (XRD). Analisis jerapan N2 bagi mangkin Cr2O3-SiO2 menunjukkan ia mempunyai luas permukaan yang paling tinggi sebanyak 391.1 m2/g, berbanding mangkin Cr2O3-Al2O3 sebanyak 224.3 m2/g. Kombinasi kaedah sol gel (SG) dan sonotermal menghasilkan mangkin yang bersaiz lebih kecil dengan keporosan mikro sebanyak 23.5% dan saiz liang sebanyak 6 nm. Ciri-ciri permukaan yang baik ditunjukkan oleh mangkin Cr2O3-SiO2 menyumbang kepada aktiviti tindak balas yang baik dengan peratus penukaran propana yang tinggi sebanyak 55% pada suhu 550 °C. Pada suhu tindak balas 600 °C pula, spesies logam Cr boleh terturun kepada keadaan pengoksidaan yang lebih rendah dan merencat tindak balas pemangkin bagi menghasilkan gas hidrogen sebagai produk utama.

 

Kata kunci:  kromium (II) oksida, pendekatan termodinamik, sonotermal, sifat pemangkinan, tenaga hidrogen

 

References

1.       Caspary, K. J., Gehrke, H., Heinritz-Adrian, M. and Schwefer, M. (2008). Handbook of heterogeneous catalysis. Chapter 14: Dehydrogenation of alkanes. John Wiley & Sons.

2.       Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E. and Weckhuysen, B. M. (2014). Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chemical Reviews, 114 (20): 10613 –10653.

3.       Lee, M-H., Nagaraja, B. M., Lee, K. Y. and Jung, K. D. (2014). Dehydrogenation of alkane to light olefin over PtSn/Al2O3 catalyst: Effects of Sn loading. Catalysis Today, 232: 53 – 62.

4.       Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L. and Nutall, R. L. (1989). The NBS tables of chemical thermodynamic properties selected values for inorganic and C1 and C2 organic substance in SI units. Journal of Physical Chemistry Reference Data, 11 (2): 1807.

5.       Isahak, W. N. R. W., Ramli, Z. A. C., Ismail, M. W., Ismail, K., Yusop, R. M., Hisham, M. W. M. and Yarmo, M. A. (2013). Adsorption–desorption of CO2 on different type of copper oxides surfaces: Physical and chemical attractions studies. Journal of CO2 Utilization, 2: 8 – 15.

6.       Brunauer, S., Emmett, P. H. and Teller, E. (1938). Adsorption of gasses in multimolecular layers.  Journal of the American Chemical Society, 60: 309 – 316.

7.       Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. H., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W. and Unger, K. K. (1994). IUPAC Recommendations for the characterization of porous solids. Pure and Applied Chemistry, 66: 1739 – 1758.

8.       Kumar, M. S., Hammer, N., Rønning, M., Holmen, A., Chena, D., Walmsley, J. C. and Øye, G. (2009). The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: New insights by a comprehensive spectroscopic study. Journal of Catalysis, 261 (1): 116 – 128.

9.       Karapet’yants, M. K. and Karapet’yants, M. L. (1970). Thermodynamic constants of inorganic and organic compounds. Ann Arbor-Humphrey Science Publishers.

10.    Zeng, G., Tian, Y. and Li, Y. (2010). Thermodynamic analysis of hydrogen production for fuel cell via oxidative steam reforming of propane.  International Journal of Hydrogen Energy, 35 (13): 6726 –6737.

11.    Albright, L. F., Crynes, B. L. and Corcoran, W. H. (1983).  Pyrolysis: Theory and industrial practice New York: Academic Press.

 




Previous                    Content                    Next