DOI:
http://dx.doi.org/10.17576/mjas-2017-2101-09
(Pengekstrakan Mikro Pemejalan Titisan Organik Terapung-Spektrometri
Serapan Atom Elektrotermal bagi Penentuan Jumlah Surih Plumbum di dalam Sampel
Air)
Arnon Thongsaw, Ratana Sananmuang,
Gareth M. Ross, Wipharat Chuachuad Chaiyasith*
Department of Chemistry,
Research Center for Academic Excellence
in Petroleum, Petrochemical and Advanced Materials,
Faculty of Science,
Naresuan University, Phitsanulok,
Thailand 65000
*Corresponding author: wipharatc@nu.ac.th
Received: 14
September 2016; Accepted: 6 December 2016
Abstract
Solidified floating organic drop microextraction (SFODME) was
utilized as a separation or pre-concentration step prior to electrothermal atomic
absorption spectrometric (ETAAS) determination of ultra-trace amounts of lead. The
method was based on the formation of an extractable complex between Pb(II) and
1-(2-pyridylazo)-2-naphathol (PAN) as a chelating agent. The main parameters
affecting the performance of SFODME, namely, type and volume of organic
solvent, pH, concentration of the chelating agent, extraction time, stirring
rate, extraction temperature, disperser solvent, ionic strength, and interference
effect were investigated and optimized. Under optimized experimental conditions
a pre-concentration factor of 22.03 and a detection limit of 0.064 μg L-1
for the pre-concentration from 13.0 mL water sample was achieved. The relative
standard deviation of the measurements in the range of 1.3 – 2.5% (n =
6). The proposed method was assessed through the analysis of certified
reference water and recovery experiment with satisfactory results.
Keywords: solidified
floating organic drop microextraction, lead, electrothermal atomic absorption
spectrometry, water samples
Pengekstrakan
mikro pemejalan titisan organik terapung (SFODME) digunakan sebagai langkah
pemisahan atau pemekatan sebelum penentuan jumlah surih plumbum ditentukan
menngunakan spektrometri serapan atom elektrotermal (ETAAS). Kaedah ini berasaskan kepada pembentukkan kompleks yang boleh
diekstrak di antara Pb(II) dan 1-(2p-piridilazo)-2-naphol (PAN) sebagai agen
pengkelat. Parameter utama yang memberi kesan kepada prestasi SFODME iaitu
jenis dan isipadu pelarut organik, pH, kepekatan agen pengkelat, masa
pengekstrakan, kesan pengacauan, suhu pengesktrakan, pelarut serakan, kekuatan
ionik dan kesan gangguan telah dikaji dan dioptimumkan. Keadaan optimum bagi
eksperimen diperolehi dengan faktor pemekatan pada 22.03 dan had pengesanan
dicapai pada 0.064 μg L-1 bagi pemekatan
13.0 mL sampel air. Pengukuran sisihan piawai relatif berada pada julat 1.3 –
2.5% (n = 6). Kaedah yang dicadangkan juga dinilai melalui analisis sampel air
rujukan yang disahkan dan ujian perolehan semula yang mencapai keputusan
memuaskan.
Kata kunci: pengekstrakan mikro pemejalan titisan
organik terapung, plumbum, spektrometri serapan atom elektrotermal, sampel air
References
1.
Yurtsever, M. and Şengil, İ. A. (2009). Biosorption
of Pb(II) ions by modified quebracho tannin resin. Journal of Hazardous Materials, 163: 58 – 64.
2.
Afridi, H. I., Kazi, T. G., Kazi, G. H.,
Jamali, M. K. and Shar, G. Q. (2006). Essential trace and toxic element
distribution in the scalp hair of Pakistani myocardial infarction patients and
controls. Biological Trace
Element Research, 113: 19 – 34.
3.
Jusko, T. A., Henderson Jr, C. R., Lanphear, B.
P., Cory-Slechta, D. A., Parsons, P. J. and Canfield, R. L. (2008). Blood lead
concentrations < 10µg/dL and child intelligence at 6 years of age. Environmental Health Perspectives,116:
243 – 248.
4.
Drinking water contaminants: Standards and Regulations, EPA (2016).
Access online from http://water.epa.gov/drink/contaminants
/index.cfm). Accessed date 06.09.16.
5.
Jitaru, P. and Adams, F. C. (2004). Speciation
analysis of mercury by solid-phase microextraction and multi-capillary gas
chromatography hyphenated to inductively coupled plasma–time-of-flight-mass
spectrometry. Journal of
Chromatography A, 1055: 197 – 207.
6.
Oleszczuk,
N., Castro, J. T., da Silva, M. M., Maria das Graças, A. K., Welz, B., and Vale, M. G. R. (2007). Method development for the
determination of manganese, cobalt and copper in green coffee comparing direct
solid sampling electrothermal atomic absorption spectrometry and inductively
coupled plasma optical emission spectrometry. Talanta, 73: 862 – 869.
7.
Mierzwa, J., Sun, Y. C., and Yang, M. H. (1997). Determination of
Co and Ni in soils and river sediments by electrothermal atomic absorption
spectrometry with slurry sampling. Analytica Chimica Acta, 355: 277 – 282.
8.
Wang, J. and Hansen, E. H. (2002). FI/SI on-line solvent
extraction/back extraction pre-concentration coupled to direct injection
nebulization inductively coupled plasma mass spectrometry for determination of
copper and lead. Journal of Analytical Atomic Spectrometry, 17: 1284 – 1289.
9.
Ndung’u, K., Franks, R. P., Bruland, K. W., and Flegal, A. R. (2003).
Organic complexation and total dissolved trace metal analysis in estuarine
waters: comparison of solvent-extraction graphite furnace atomic absorption
spectrometric and chelating resin flow injection inductively coupled plasma-mass
spectrometric analysis. Analytica Chimica Acta, 481: 127 – 138.
10.
Ghaedi, M., Montazerozohori, M. and Soylak, M. (2007). Solid phase
extraction method for selective determination of Pb(II) in water samples using
4-(4-methoxybenzylidenimine) thiophenole. Journal of Hazardous Materials,
142: 368 – 373.
11.
Dadfarnia, S., Talebi, M., Shabani, A. M. H. and Beni, Z. (2007). Determination
of lead and cadmium in different samples by flow injection atomic absorption
spectrometry incorporating a microcolumn of immobilized ammonium pyrrolidine dithiocarbamate
on microcrystalline naphthalene. Croatian Chemica Acta, 80: 17 – 23.
12.
Alonso,
E. V., Cordero, M. S., De Torres, A. G. and Pavón, J. C. (2006). Lead ultra-trace on-line
preconcentration and determination using selective solid phase extraction and
electrothermal atomic absorption spectrometry: applications in seawaters and
biological samples. Analytical and Bioanalytical Chemistry, 385: 1178 – 1185.
13.
Peker,
D. S. K., Turkoglu, O. and Soylak, M. (2007). Dysprosium (III) hydroxide
coprecipitation system for the separation and preconcentration of heavy metal
contents of table salts and natural waters. Journal of Hazardous Materials,
143: 555 – 560.
14.
Luconi,
M. O., Silva, M. F., Olsina, R. A. and Fernández, L. P. (2000). Cloud point extraction of lead in
saliva via use of nonionic PONPE 7.5 without added chelating agents. Talanta,
51: 123 – 129.
15.
Chen, J., Xiao, S., Wu, X., Fang, K., and Liu, W. (2005). Determination
of lead in water samples by graphite furnace atomic absorption spectrometry
after cloud point extraction. Talanta, 67: 992 – 996.
16.
Purohit, R., and Devi, S. (1992). Determination of trace amounts
of lead by chelating ion exchange and on-line preconcentration in flow-injection
atomic absorption spectrometry. Analytica Chimica Acta, 259: 53 – 60.
17.
Liang, P., Liu, R. and Cao, J. (2008). Single drop microextraction
combined with graphite furnace atomic absorption spectrometry for determination
of lead in biological samples. Microchimica Acta, 160: 135 – 139.
18.
Rasmussen, K. E. and Pedersen-Bjergaard, S. (2004). Developments
in hollow fibre-based, liquid-phase microextraction. TrAC Trends in
Analytical Chemistry, 23: 1 – 10.
19.
Farajzadeh, M. A., Bahram, M., Zorita, S., and Mehr, B. G. (2009).
Optimization and application of homogeneous liquid–liquid extraction in
preconcentration of copper (II) in a ternary solvent system. Journal of
Hazardous Materials, 161: 1535 - 1543.
20.
Kozani,
R. R., Assadi, Y., Shemirani, F., Hosseini, M. R. M., and Jamali, M. R. (2007). Part-per-trillion
determination of chlorobenzenes in water using dispersive liquid–liquid
microextraction combined gas chromatography–electron capture detection. Talanta,
72: 387 – 393.
21.
Jain, R. and Singh, R. (2016). Applications of dispersive liquid–liquid
micro-extraction in forensic toxicology. TrAC Trends in Analytical Chemistry,
75: 227 – 237.
22.
Zanjani, M. R. K., Yamini, Y., Shariati, S. and Jönsson, J. Å. (2007).
A new liquid-phase microextraction method based on solidification of floating
organic drop. Analytica Chimica Acta, 585: 286 – 293.
23.
Dadfarnia, S. and Shabani, A. M. H. (2010). Recent development in
liquid phase microextraction for determination of trace level concentration of
metals – A review. Analytica Chimica Acta, 658: 107 – 119.
24.
Zhu, X., Zhu, X. and Wang, B. (2006). Determination of trace
cadmium in water samples by graphite furnace atomic absorption spectrometry
after cloud point extraction. Microchimica Acta, 154: 95 – 100.
25.
Moghadam, M. R., Dadfarnia, S. and Shabani, A. M. H. (2011). Speciation
and determination of ultra-trace amounts of chromium by solidified floating
organic drop microextraction (SFODME) and graphite furnace atomic absorption
spectrometry. Journal of Hazardous Materials, 186: 169 – 174.
26.
Chen, J., Xiao, S., Wu, X., Fang, K. and Liu, W. (2005). Determination
of lead in water samples by graphite furnace atomic absorption spectrometry
after cloud point extraction. Talanta, 67: 992 – 996.
27.
Naseri,
M. T., Hosseini, M. R. M., Assadi, Y. and Kiani, A. (2008). Rapid determination of lead in water
samples by dispersive liquid–liquid microextraction coupled with electrothermal
atomic absorption spectrometry. Talanta, 75: 56 – 62.