Malaysian Journal of Analytical Sciences Vol 21 No 2 (2017): 391 - 405

DOI: https://doi.org/10.17576/mjas-2017-2102-14

 

 

 

A FABRICATION OF A LOW–COST ZEOLITE BASED CERAMIC MEMBRANE VIA PHASE INVERSION AND SINTERING TECHNIQUE

 

(Fabrikasi Membran Seramik Kos Rendah Berasaskan Zeolit Melalui Kaedah Penyongsangan Fasa dan Sinteran)

 

Mohd Ridhwan Adam1, Mohd Hafiz Dzarfan Othman1*, Mohd Hafiz Puteh2, Mohammad Arif Budiman Pauzan1, Mukhlis A Rahman1, Juhana Jaafar1

 

1Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering

2Faculty of Civil Engineering

Universiti Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia.

 

*Corresponding author: hafiz@petroleum.utm.my

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

The usage of ceramic membranes is gaining enormous attention due to their higher selectivity, permeation rate, and chemical and thermal stability as compared to the polymeric membrane. Owing to the fact of these superior properties, the search of a low-cost ceramic membrane is still in demand. To date, the fabrication of ceramic membrane using natural zeolite as the membrane ceramic loading has yet to be explored. Thus, this study aims to develop natural zeolite (Clinoptilolite) as the ceramic source in the fabrication of low-cost hollow fibre ceramic membrane (HFCM) via phase inversion and sintering techniques. Several fabrication parameters were also studied namely air gap distance, bore fluid flow rate and sintering temperature throughout this research. The best ceramic membrane was fabricated using 5 cm air – gap distance, 13 mL min-1 of bore fluid flow rate and 1000 °C of sintering temperature. The acceptable strength and morphological behaviour of finger-like and sponge-like voids were found to be an advantageous characteristic of the fabricated membrane. The cheap and yet abundant raw ceramic material as well as low sintering temperature are eventually reduced the cost of membrane production.

 

Keywords:  natural zeolite, ceramic membrane, phase inversion, sintering

 

Abstrak

Penggunaan membran seramik semakin mendapat perhatian ramai berasaskan sifat pemilihan yang tinggi, kadar keserapan, dan daya ketahanan yang tinggi terhadap suhu dan bahan kimia berbanding dengan membran polimer. Berdasarkan fakta tentang sifat-sifat yang hebat ini, maka pencarian terhadap membran seramik kos rendah masih lagi menjadi permintaan. Sehingga kini, fabrikasi membran seramik menggunakan zeolit semulajadi sebagai bahan seramik masih belum dikaji. Justeru itu, kajian ini memfokuskan kepada pembangunan zeolit semulajadi (Clinoptilolite) sebagai bahan sumber seramik dalam fabrikasi membran seramik gentian berongga (HFCM) berkos rendah melalui kaedah penyongsangan fasa dan sinteran. Beberapa parameter fabrikasi telah dikaji iaitu jarak ruang udara, kadar aliran cecair penebuk dan suhu sinteran. Membran seramik terbaik telah diperoleh menggunakan jarak ruang udara sebanyak 5 cm, kadar aliran cecair penebuk iaitu 13 mL min-1 dan 1000 °C bagi suhu sinteran. Nilai kekuatan dan sifat morfologi yang memuaskan bagi stuktur span dan jejari dikenal pasti menjadi ciri - ciri kelebihan bagi membran yang difabrikasi. Harga yang murah dan sumber asli bahan seramik yang banyak serta suhu sinteran yang rendah justeru mengurangkan kos penghasilan membran ini.

 

Kata kunci:  zeolit semulajadi, membran seramik, penyongsangan fasa, sinteran

 

References

1.       Ozturk, I.,  Altinbas,  M.,  Koyuncu, I., Arikan, O.  and  Yangin,  C.  G. (2003).   Advanced   physico-chemical treatment experiences on young municipal landfill leachates. Waste Management, 23:  441 – 446.

2.       Gabelman, A. and  Hwang, S. (1999). Hollow fiber membrane contactors, Journal of Membrane Science, 159: 61 – 67.

3.       Keshavarz, P.,  Ayatollahi, S. and  Fathikalajahi, J.  (2008).  Mathematical  modelling of  gas-liquid membrane contactors using random distribution of fibres. Journal of Membrane Science, 325: 98 – 108.

4.       Tan, X., Tan, S. P., Teo, W. K. and Li, K. (2006). Polyvinylidenefluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271: 59 – 68.

5.       Barbe, A. M.,  Hogan, P. A. and  Johnson, R. A.  (2000).  Surface  morphology changes during initial usage of hydrophobic, microporous polypropylene membranes. Journal of Membrane Science, 172: 149 –156.

6.       Wang, R., Li, D. F., Zhou, C., Liu, M. and Liang, D. T. (2004). Impact of DEA solutions with and without CO2 loading  on  porous  polypropylene  membranes  intended for use as contactors. Journal of Membrane Science, 229: 147 – 157.

7.       Dindore, V. Y.,  Brilman, D. W. F.,  Feron, P. H. M. and  Versteeg, G. F. (2004).  CO2  absorption  at elevated pressures using a hollow fiber membrane contactor. Journal of Membrane Science, 235: 99 – 109.

8.       Liu, S., Tan, X.,  Li, K. and  Hughes, R. (2001). Preparation  and  characterisation of SrCe0.95Yb0.05O2.975 hollow fibre membranes. Journal of Membrane Science, 193: 249 – 260.

9.       Liu, S., Li, K. and Hughes, R. (2003). Preparation of porous aluminium oxide (Al2O3) hollow fibre membranes by a combined phase-inversion and sintering method. Ceramic International, 29: 875 –881.

10.    Velez, M. H.,  Herrera, O. R.,  Martin,  A. A.,  Rodriguez,  A. J. and  Malherbe, R. R.  (1995).  New  materials obtained  from  high temperature  phase  transformation of natural zeolites. Journal of Material Science Letter, 14: 1653 – 1656.

11.    Mumpton, F. A. (1978). Natural zeolites:  A new  industrial  mineral commodity, in: L.B. Sand, F.A. Mumpton (Eds.), Natural Zeolites, Occurrence, Properties, Use. Pergamon Press, New York: pp. 285 –302.

12.    Li, J. L. and Chen, B. H. (2005). Review of CO2 absorption using chemical solvents in hollow fibre membrane contactors. Separation and Purification Technology, 41: 109 – 122.

13.    Alami Younssi, S.,  Iraqi, A., Rafiq, M.,  Persin, M.,  Larbot, A. and Sarrazin, J. (2003). γ alumina membranes grafting by organosilanes and its application to the separation of solvent mixtures by pervaporation. Separation and Purification Technology, 32: 175 – 179.

14.    Krajewski, S. R., Kujawski, W., Dijoux, F., Picard, C. and Larbot, A. (2004).   Grafting  of  ZrO2  powder and ZrO2 membrane by fluoroalkylsilanes. Colloids and Surface A, 243: 43 – 47.

15.    Othman,  M. H. D.,  Wu , Z.,  Droushiotis, N.,  Doraswami, U., Kelsall, G. and Li, K. (2010).  Single-step fabri-cation and characterisations of electrolyte / anode dual – layer  hollow  fibres  for microtubular solid oxide fuel cells. Journal of Membrane Science, 351: 196 – 204.

16.    Kingsbury, B. F. K. and Li, K. (2009). A morphological study of ceramic hollow fibre membranes. Journal of Membrane Science, 328: 134 – 140.

17.    Nitman, J., Daccord, G. and Stanley, H. E. (1985).  Fractal  growth  of  viscous fingers: Quantitative characteri-zation of a fluid instability phenomenon. Nature, 314: 141 – 144.

18.    Li, L., Chen, M., Dong, Y., Dong, X., Cerneaux, S., Hampshire, S.,  Cao, J., Zhu, L., Zhu, Z. and Liu, J. (2016). A  low-cost  alumina-mullite  composite  hollow fiber ceramic  membrane  fabricated  via  phase-inversion and sintering method. Journal of the European Ceramic Society, 36: 2057 – 2066.

19.    Bonyadi, S., Chung, T. S. and  Krantz W. B. (2007).   Investigation  of  corrugation  phenomenon   in the inner contour of hollow fibre during the non-solvent induced phase-separation process. Journal of Membrane Science, 299: 200 – 210.

20.    Wang, J. W., Li, L., Zhang, J. W., Xu, X. and Chen, C. S. (2016).  β-Sialon  ceramic  hollow fiber membranes with high strength  and low  thermal conductivity for membrane distillation. Journal of the European Ceramic Society, 36: 59 – 65.

 




Previous                    Content                    Next