Malaysian Journal of Analytical Sciences Vol 21 No 2
(2017): 391 - 405
DOI:
https://doi.org/10.17576/mjas-2017-2102-14
A FABRICATION OF
A LOW–COST ZEOLITE BASED CERAMIC MEMBRANE VIA PHASE INVERSION AND SINTERING
TECHNIQUE
(Fabrikasi Membran Seramik Kos Rendah Berasaskan Zeolit Melalui Kaedah
Penyongsangan Fasa dan Sinteran)
Mohd Ridhwan
Adam1, Mohd Hafiz Dzarfan Othman1*, Mohd Hafiz Puteh2,
Mohammad Arif Budiman Pauzan1, Mukhlis A Rahman1, Juhana
Jaafar1
1Advanced
Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy
Engineering
2Faculty of Civil
Engineering
Universiti
Teknologi Malaysia, 81310 UTM, Skudai, Johor, Malaysia.
*Corresponding author: hafiz@petroleum.utm.my
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
The usage of ceramic membranes is gaining enormous attention due to
their higher selectivity, permeation rate, and chemical and thermal stability
as compared to the polymeric membrane. Owing to the fact of these superior
properties, the search of a low-cost ceramic membrane is still in demand. To date,
the fabrication of ceramic membrane using natural zeolite as the membrane
ceramic loading has yet to be explored. Thus, this study aims to
develop natural zeolite (Clinoptilolite) as the ceramic source in the
fabrication of low-cost hollow fibre ceramic membrane (HFCM) via phase
inversion and sintering techniques. Several fabrication parameters were also
studied namely air gap distance, bore fluid flow rate and sintering temperature
throughout this research. The best ceramic membrane was fabricated using 5 cm
air – gap distance, 13 mL min-1 of bore fluid flow rate and 1000 °C
of sintering temperature. The acceptable strength and morphological behaviour
of finger-like and sponge-like voids were found to be an advantageous
characteristic of the fabricated membrane. The cheap and yet abundant raw
ceramic material as well as low sintering temperature are eventually reduced
the cost of membrane production.
Keywords: natural zeolite, ceramic membrane, phase
inversion, sintering
Abstrak
Penggunaan membran seramik semakin mendapat perhatian ramai berasaskan
sifat pemilihan yang tinggi, kadar keserapan, dan daya ketahanan yang tinggi
terhadap suhu dan bahan kimia berbanding dengan membran polimer. Berdasarkan
fakta tentang sifat-sifat yang hebat ini, maka pencarian terhadap membran
seramik kos rendah masih lagi menjadi permintaan. Sehingga kini, fabrikasi
membran seramik menggunakan zeolit semulajadi sebagai bahan seramik masih belum
dikaji. Justeru itu, kajian ini memfokuskan kepada pembangunan zeolit
semulajadi (Clinoptilolite) sebagai bahan sumber seramik dalam fabrikasi membran
seramik gentian berongga (HFCM) berkos rendah melalui kaedah penyongsangan fasa
dan sinteran. Beberapa parameter fabrikasi telah dikaji iaitu jarak ruang
udara, kadar aliran cecair penebuk dan suhu sinteran. Membran seramik terbaik
telah diperoleh menggunakan jarak ruang udara sebanyak 5 cm, kadar aliran
cecair penebuk iaitu 13 mL min-1 dan 1000 °C bagi suhu sinteran.
Nilai kekuatan dan sifat morfologi yang memuaskan bagi stuktur span dan jejari
dikenal pasti menjadi ciri - ciri kelebihan bagi membran yang difabrikasi.
Harga yang murah dan sumber asli bahan seramik yang banyak serta suhu sinteran
yang rendah justeru mengurangkan kos penghasilan membran ini.
Kata kunci: zeolit semulajadi, membran seramik, penyongsangan fasa, sinteran
References
1.
Ozturk,
I., Altinbas, M., Koyuncu,
I., Arikan, O. and Yangin, C. G. (2003).
Advanced
physico-chemical
treatment experiences on young municipal landfill leachates. Waste Management, 23: 441 – 446.
2.
Gabelman,
A. and Hwang, S. (1999). Hollow fiber
membrane contactors, Journal of Membrane
Science, 159: 61 – 67.
3.
Keshavarz,
P., Ayatollahi, S. and Fathikalajahi, J. (2008). Mathematical modelling of gas-liquid membrane contactors using random
distribution of fibres. Journal of
Membrane Science, 325: 98 – 108.
4.
Tan,
X., Tan, S. P., Teo, W. K. and Li, K. (2006). Polyvinylidenefluoride (PVDF)
hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 271: 59 – 68.
5.
Barbe,
A. M., Hogan, P. A. and Johnson, R. A. (2000). Surface morphology changes during initial usage of hydrophobic,
microporous polypropylene membranes. Journal
of Membrane Science, 172: 149 –156.
6.
Wang,
R., Li, D. F., Zhou, C., Liu, M. and Liang, D. T. (2004). Impact of DEA
solutions with and without CO2 loading on porous
polypropylene membranes intended for use as contactors. Journal of Membrane Science, 229: 147 – 157.
7.
Dindore,
V. Y., Brilman, D. W. F., Feron, P. H. M. and Versteeg, G. F. (2004). CO2 absorption at elevated pressures using a hollow fiber
membrane contactor. Journal of Membrane
Science, 235: 99 – 109.
8.
Liu,
S., Tan, X., Li, K. and Hughes, R. (2001). Preparation and characterisation
of SrCe0.95Yb0.05O2.975 hollow fibre
membranes. Journal of Membrane Science,
193: 249 – 260.
9.
Liu,
S., Li, K. and Hughes, R. (2003). Preparation of porous aluminium oxide (Al2O3)
hollow fibre membranes by a combined phase-inversion and sintering method. Ceramic International, 29: 875 –881.
10.
Velez,
M. H., Herrera, O. R., Martin, A. A., Rodriguez,
A. J. and Malherbe, R. R. (1995). New materials
obtained from high temperature phase transformation
of natural zeolites. Journal of Material
Science Letter, 14: 1653 – 1656.
11.
Mumpton,
F. A. (1978). Natural zeolites: A new industrial mineral commodity, in: L.B. Sand, F.A. Mumpton
(Eds.), Natural Zeolites, Occurrence, Properties, Use. Pergamon Press, New
York: pp. 285 –302.
12.
Li,
J. L. and Chen, B. H. (2005). Review of CO2 absorption using
chemical solvents in hollow fibre membrane contactors. Separation and Purification Technology, 41: 109 – 122.
13.
Alami
Younssi, S., Iraqi, A., Rafiq, M., Persin, M., Larbot, A. and Sarrazin, J. (2003). γ alumina
membranes grafting by organosilanes and its application to the separation of
solvent mixtures by pervaporation. Separation
and Purification Technology, 32: 175 – 179.
14.
Krajewski,
S. R., Kujawski, W., Dijoux, F., Picard, C. and Larbot, A. (2004). Grafting of ZrO2
powder and ZrO2 membrane by
fluoroalkylsilanes. Colloids and Surface
A, 243: 43 – 47.
15.
Othman,
M. H. D., Wu , Z., Droushiotis, N., Doraswami, U., Kelsall, G. and Li, K. (2010). Single-step fabri-cation and characterisations
of electrolyte / anode dual – layer hollow
fibres for microtubular solid oxide fuel cells. Journal of Membrane Science, 351: 196 – 204.
16.
Kingsbury,
B. F. K. and Li, K. (2009). A morphological study of ceramic hollow fibre
membranes. Journal of Membrane Science,
328: 134 – 140.
17.
Nitman,
J., Daccord, G. and Stanley, H. E. (1985). Fractal growth of
viscous fingers: Quantitative characteri-zation
of a fluid instability phenomenon. Nature,
314: 141 – 144.
18.
Li,
L., Chen, M., Dong, Y., Dong, X., Cerneaux, S., Hampshire, S., Cao, J., Zhu, L., Zhu, Z. and Liu, J. (2016).
A low-cost alumina-mullite composite hollow fiber ceramic membrane fabricated via phase-inversion
and sintering method. Journal of the
European Ceramic Society, 36: 2057 – 2066.
19.
Bonyadi,
S., Chung, T. S. and Krantz W. B. (2007).
Investigation of corrugation
phenomenon in the
inner contour of hollow fibre during the non-solvent induced phase-separation
process. Journal of Membrane Science, 299: 200 – 210.
20.
Wang,
J. W., Li, L., Zhang, J. W., Xu, X. and Chen, C. S. (2016). β-Sialon ceramic hollow fiber membranes with high strength and low thermal conductivity for membrane
distillation. Journal of the European
Ceramic Society, 36: 59 – 65.