Malaysian
Journal of Analytical Sciences Vol 21 No 3 (2017): 659 - 668
DOI:
https://doi.org/10.17576/mjas-2017-2103-15
POLY(EUGENOL SULFONATE) - SULFONATED POLYETHERIMIDE
NEW BLENDS MEMBRANE PROMISING FOR DIRECT METHANOL FUEL CELL
(Membran Campuran daripada Poli(Eugenol Sulfonat) dan Polieterimida Sulfonat
yang Menjanjikan untuk Sel Bahan Api Metanol Langsung)
Eka Cahya Muliawati1,2, Mardi Santoso2, Ahmad Fauzi
Ismail1,3, Juhana Jaafar1,3, Mohd. Taufiq Salleh1,3,
Silvana Dwi Nurherdiana2,
Nurul Widiastuti2*
1Advanced Membrane Technology Research Centre (AMTEC),
Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor
Bahru, Johor, Malaysia
2Department of Chemistry, Faculty of Mathematics and
Natural Sciences,
Institut
Teknologi Sepuluh Nopember, Surabaya, Indonesia
3Faculty of Petroleum and Renewable Energy Engineering,
Universiti
Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
*Corresponding author: nurul_widiastuti@chem.its.ac.id
Received: 26
August 2016; Accepted: 8 January 2017
Abstract
A new polymeric membrane blended from sulfonated polyetherimide (SPEI) and poly(eugenol sulfonate) (PES) was
prepared as proton exchange membrane (PEM) for direct methanol fuel cell (DMFC). The membrane was
characterized by Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric
analysis (TGA) and Scanning Electronic Microscopy (SEM). Ion exchange
capacity (IEC), proton conductivity, methanol
barrier, water uptake, water contact angle and mechanical strength
of the membrane was also being determined. The new PES/SPEI membrane with 3 wt.% PES and 20 wt.% SPEI show higher IEC, water uptake, proton
conductivity and methanol barrier properties as compared to Nafion 117 membrane. As a conclusion, the results indicate that the SPEI/PES membrane has potential to
be employed as PEM for DMFC application.
Keywords: sulfonated polyetherimide, poly(eugenol
sulfonate), blend membrane, direct methanol fuel cell
Abstrak
Membran polimer baru diperbuat daripada campuran
polieterimida sulfonat (SPEI) dan poli(eugenol sulfonat) (PES) telah disediakan
sebagai membran pertukaran proton (PEM) untuk sel bahan api metanol langsung (DMFC).
Membran ini telah dianalisis menggunakan Spektroskopi Inframerah Transformasi
Fourier (FTIR), analisis termogravimetri (TGA) dan Mikroskop Imbasan Elektron
(SEM). Sifat membran seperti kapasiti pertukaran ion (IEC), kekonduksian
proton, halangan metanol, penyerapan air, sudut sentuhan air dan kekuatan
mekanikal juga telah ditentukan. Membran baru PES/SPEI dengan 3 wt.% PES dan 20
wt.% SPEI telah menunjukkan nilai IEC, pengambilan air, kekonduksian proton dan
halangan metanol yang lebih tinggi berbanding membran Nafion 117. Sebagai
kesimpulan, hasil kajian menunjukkan bahawa membran SPEI/PES mempunyai potensi
untuk digunapakai sebagai PEM untuk aplikasi DMFC.
Kata kunci: polieterimida sulfonat, poli(eugenol sulfonat), membran
campuran, sel bahan api metanol langsung
References
1.
Ma,
C. C. M., Hsiao, Y. H., Lin, Y. F., Yen,
C. Y., Liao, S. H., Weng, C. C. and
Weng, F. B. (2008). Effects and
properties of various molecular weights of poly(propylene oxide) oligomers/Nafion® acid–base blend membranes for direct methanol
fuel cells. Journal of Power Sources,
185(2): 846 –852.
2.
Yang,
T. and Liu, C. (2011). SPEEK/sulfonated cyclodextrin blend membranes
for direct methanol fuel cell. International
Journal of Hydrogen Energy, 36(9): 5666 – 5674.
3.
Tsai,
J. C. and Lin, C. K. (2011). Acid-base blend membranes based on
Nafion®/aminated SPEEK for reducing methanol permeability. Journal of the Taiwan Institute of Chemical Engineers, 42(2): 281 –285.
4.
Muthumeenal,
A., Neelakandan, S., Kanagaraj, P. and Nagendran, A. (2016). Synthesis and
properties of novel proton exchange membranes based on sulfonated
polyethersulfone and N-phthaloyl chitosan blends for DMFC applications. Renewable Energy, 86: 922 – 929.
5.
Yang,
T. (2009). Composite membrane of sulfonated poly(ether ether ketone) and sulfated poly(vinyl alcohol) for use in direct
methanol fuel cells. Journal of Membrane
Science, 342(1): 221 – 226.
6.
Lufrano,
F., Baglio, V., Staiti, P. and Antonucci,
V. (2008). Polymer electrolytes based on sulfonated poly-sulfone
for direct methanol fuel cells. Journal
of Power Sources, 179(1): 34 – 41.
7.
Rajagopalan,
M., Jeon, J. H. and
Oh, I. K. (2010). Electric-stimuli-responsive bending actuator based on sulfonated polyetherimide. Sensors and Actuators B: Chemical,
151(1): 198 – 204.
8.
Awang,
N., Ismail, A. F., Jaafar, J., Matsuura, T., Junoh, H., Othman, M. H. D. and Rahman, M. A. (2015).
Functionalization of polymeric materials as a high performance
membrane for direct methanol fuel cell:
A review. Reactive and Functional
Polymers, 86: 248 – 258.
9.
Liu
S., Wanga L., Ding Y., Liu B., Han X., Song Y. (2014). Novel sulfonated poly(ether ether keton)/ poly-etherimide
acid-base blend membranes for vanadium
redox flow battery applications. Electrochimica
Acta, 130: 90 – 96.
10.
Jung,
H. Y., and Park, J. K. (2007). Blend membranes based on sulfonated poly(ether ether ketone) and poly(vinylidene
fluoride) for high performance direct methanol fuel cell. Electrochimica Acta, 52(26): 7464 – 7468.
11.
Kim,
D. J., Lee, H. J. and Nam, S. Y. (2014). Sulfonated poly(arylene ether sulfone)
membranes blended with hydrophobic polymers for direct methanol
fuel cell applications. International Journal
of Hydrogen Energy, 39(30): 17524 – 17532.
12.
Jung, B., Kim, B. and Yang, J.
M. (2004). Transport of methanol and protons through partially sulfonated polymer
blend membranes for direct methanol fuel cell. Journal of Membrane Science, 245(1): 61 – 69.
13.
Arnett,
N. Y., Harrison, W. L., Badami, A. S., Roy, A., Lane, O., Cromer, F., Dong, L. and McGrath, J. E. (2007). Hydrocarbon and
partially fluorinated sulfonated copolymer blends as functional membranes for
proton exchange membrane fuel cells. Journal
of Power Sources, 172(1): 20 – 29.
14.
Handayani, D. S.
(2002). Sulfonasi dan polimerisasi eugenol. Alchemy
Jurnal Penelitian Kimia, 1(2): 48 – 54.
15.
Guhathakurta,
S. and Min, K. (2009). Influence of crystal morphology of 1H-1, 2,4-triazole on
anhydrous state proton conductivity of sulfonated bisphenol A polyetherimide
based polyelectrolytes. Polymer,
50(4): 1034 – 1045.
16.
Maier,
G. and Meier-Haack, J. (2008). Sulfonated aromatic polymers for fuel cell
membranes. In Fuel cells II. Springer Berlin Heidelberg: pp. 1 – 62.
17.
Shen,
L. Q., Xu, Z. K., Liu, Z. M. and Xu, Y. Y. (2003). Ultrafiltration hollow fiber membranes of sulfonated
polyetherimide/polyetherimide blends: Preparation, morphologies and anti-fouling
properties. Journal of Membrane Science, 218(1): 279 – 293.
18.
Purwanto,
M., Atmaja, L., Mohamed, M. A., Salleh, M. T., Jaafar, J., Ismail, A. F.,
Santoso, M. & Widiastuti, N. (2016). Biopolymer-based electrolyte membranes from chitosan
incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel
cells. RSC Advances, 6(3): 2314 – 2322.
19.
Liu, S., Wang, L., Ding, Y., Liu, B., Han, X. and Song, Y. (2014). Novel sulfonated poly(ether ether keton)/polyetherimide
acid-base blend membranes for vanadium redox flow battery applications. Electrochimica Acta, 130: 90 – 96.
20.
Jaafar,
J., Ismail, A. F. and Matsuura, T. (2009). Preparation and barrier properties of SPEEK/Cloisite
15A®/TAP nanocomposite membrane for DMFC application. Journal of Membrane Science, 345(1): 119 – 127.
21.
Tohidian, M., Ghaffarian, S. R., Shakeri, S. E., Dashtimoghadam, E. and Hasani-Sadrabadi,
M. M. (2013). Organically
modified montmorillonite and chitosan–phosphotungstic acid complex
nanocomposites as high performance membranes for fuel cell applications. Journal of Solid State Electrochemistry,
17(8): 2123 – 2137.