Malaysian Journal of Analytical Sciences Vol 21 No 3 (2017): 659 - 668

DOI: https://doi.org/10.17576/mjas-2017-2103-15

 

 

 

POLY(EUGENOL SULFONATE) - SULFONATED POLYETHERIMIDE NEW BLENDS MEMBRANE PROMISING FOR DIRECT METHANOL FUEL CELL

 

(Membran Campuran daripada Poli(Eugenol Sulfonat) dan Polieterimida Sulfonat yang Menjanjikan untuk Sel Bahan Api Metanol Langsung)

 

Eka Cahya Muliawati1,2, Mardi Santoso2, Ahmad Fauzi Ismail1,3, Juhana Jaafar1,3, Mohd. Taufiq Salleh1,3,

 Silvana Dwi Nurherdiana2, Nurul Widiastuti2*

 

1Advanced Membrane Technology Research Centre (AMTEC),

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences,

Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia

3Faculty of Petroleum and Renewable Energy Engineering,

Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia

 

*Corresponding author: nurul_widiastuti@chem.its.ac.id

 

 

Received: 26 August 2016; Accepted: 8 January 2017

 

 

Abstract

A new polymeric membrane blended from sulfonated polyetherimide (SPEI) and poly(eugenol sulfonate) (PES) was prepared as proton exchange membrane (PEM) for direct methanol fuel cell (DMFC). The membrane was characterized by Fourier Transform Infrared Spectroscopy (FTIR), thermogravimetric analysis (TGA) and Scanning Electronic Microscopy (SEM). Ion exchange capacity (IEC), proton conductivity, methanol barrier, water uptake, water contact angle and mechanical strength of the membrane was also being determined. The new PES/SPEI membrane with 3 wt.% PES and 20 wt.% SPEI show higher IEC, water uptake, proton conductivity and methanol barrier properties as compared to Nafion 117 membrane. As a conclusion, the results indicate that the SPEI/PES membrane has potential to be employed as PEM for DMFC application.

 

Keywords:  sulfonated polyetherimide, poly(eugenol sulfonate), blend membrane, direct methanol fuel cell

 

Abstrak

Membran polimer baru diperbuat daripada campuran polieterimida sulfonat (SPEI) dan poli(eugenol sulfonat) (PES) telah disediakan sebagai membran pertukaran proton (PEM) untuk sel bahan api metanol langsung (DMFC). Membran ini telah dianalisis menggunakan Spektroskopi Inframerah Transformasi Fourier (FTIR), analisis termogravimetri (TGA) dan Mikroskop Imbasan Elektron (SEM). Sifat membran seperti kapasiti pertukaran ion (IEC), kekonduksian proton, halangan metanol, penyerapan air, sudut sentuhan air dan kekuatan mekanikal juga telah ditentukan. Membran baru PES/SPEI dengan 3 wt.% PES dan 20 wt.% SPEI telah menunjukkan nilai IEC, pengambilan air, kekonduksian proton dan halangan metanol yang lebih tinggi berbanding membran Nafion 117. Sebagai kesimpulan, hasil kajian menunjukkan bahawa membran SPEI/PES mempunyai potensi untuk digunapakai sebagai PEM untuk aplikasi DMFC.

 

Kata kunci:  polieterimida sulfonat, poli(eugenol sulfonat), membran campuran, sel bahan api metanol langsung

 

References

1.       Ma, C. C. M.,  Hsiao, Y. H., Lin, Y. F., Yen, C. Y.,  Liao, S. H., Weng, C. C. and Weng, F. B. (2008).  Effects and properties of  various  molecular  weights of  poly(propylene oxide)  oligomers/Nafion®  acid–base blend membranes for direct methanol fuel cells. Journal of Power Sources, 185(2): 846 –852.

2.       Yang, T.  and  Liu, C.  (2011).  SPEEK/sulfonated cyclodextrin blend membranes for direct methanol fuel cell. International Journal of Hydrogen Energy, 36(9): 5666 – 5674. 

3.       Tsai, J. C. and Lin, C. K. (2011). Acid-base blend membranes based on Nafion®/aminated SPEEK for reducing methanol permeability. Journal of the Taiwan Institute of Chemical Engineers, 42(2): 281 –285.

4.       Muthumeenal, A., Neelakandan, S., Kanagaraj, P. and Nagendran, A. (2016). Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications. Renewable Energy, 86: 922 – 929.

5.       Yang, T. (2009). Composite membrane of sulfonated poly(ether ether ketone) and  sulfated poly(vinyl alcohol) for use in direct methanol fuel cells. Journal of Membrane Science, 342(1): 221 – 226.

6.       Lufrano, F.,  Baglio, V.,  Staiti, P.  and  Antonucci, V.  (2008).  Polymer  electrolytes based on sulfonated poly-sulfone for direct methanol fuel cells. Journal of Power Sources, 179(1): 34 – 41.

7.       Rajagopalan, M.,  Jeon,  J. H.  and  Oh, I. K.  (2010).  Electric-stimuli-responsive  bending  actuator  based  on sulfonated polyetherimide. Sensors and Actuators B: Chemical, 151(1): 198 – 204.

8.       Awang, N.,  Ismail, A. F.,  Jaafar, J.,  Matsuura, T.,  Junoh, H.,  Othman, M. H. D. and Rahman, M. A. (2015). Functionalization  of  polymeric  materials  as a  high  performance  membrane for direct methanol fuel cell: A review. Reactive and Functional Polymers, 86: 248 – 258.

9.       Liu S.,  Wanga L.,  Ding Y.,  Liu B.,  Han X.,  Song Y. (2014).  Novel sulfonated poly(ether ether keton)/ poly-etherimide  acid-base  blend  membranes  for  vanadium redox flow battery applications. Electrochimica Acta, 130: 90 – 96.

10.    Jung, H. Y., and Park, J. K. (2007).  Blend  membranes  based on  sulfonated  poly(ether ether ketone) and poly(vinylidene fluoride) for high performance direct methanol fuel cell. Electrochimica Acta, 52(26): 7464 – 7468.

11.    Kim, D. J., Lee, H. J. and Nam, S. Y. (2014). Sulfonated poly(arylene ether sulfone)  membranes blended with hydrophobic  polymers  for  direct  methanol fuel cell applications. International Journal of Hydrogen Energy, 39(30): 17524 – 17532.

12.    Jung, B.,  Kim, B. and  Yang,  J. M. (2004).  Transport  of  methanol  and  protons through partially sulfonated polymer blend membranes for direct methanol fuel cell. Journal of Membrane Science, 245(1): 61 – 69.

13.    Arnett, N. Y.,  Harrison, W. L.,  Badami, A. S.,  Roy, A.,  Lane, O.,  Cromer, F.,  Dong, L.  and McGrath, J. E. (2007). Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells. Journal of Power Sources, 172(1): 20 – 29.

14.    Handayani, D. S. (2002). Sulfonasi dan polimerisasi eugenol. Alchemy Jurnal Penelitian Kimia, 1(2): 48 – 54.

15.    Guhathakurta, S. and Min, K. (2009). Influence of crystal morphology of 1H-1, 2,4-triazole on anhydrous state proton conductivity of sulfonated bisphenol A polyetherimide based polyelectrolytes. Polymer, 50(4): 1034 – 1045.

16.    Maier, G. and Meier-Haack, J. (2008). Sulfonated aromatic polymers for fuel cell membranes. In Fuel cells II. Springer Berlin Heidelberg: pp. 1 – 62.

17.    Shen, L. Q., Xu, Z. K., Liu, Z. M. and Xu, Y. Y. (2003).  Ultrafiltration hollow fiber membranes of sulfonated polyetherimide/polyetherimide  blends:  Preparation,  morphologies  and  anti-fouling  properties.  Journal  of Membrane Science, 218(1): 279 – 293.

18.    Purwanto, M., Atmaja, L., Mohamed, M. A., Salleh, M. T., Jaafar, J., Ismail, A. F., Santoso, M. & Widiastuti, N. (2016).  Biopolymer-based  electrolyte  membranes  from  chitosan incorporated with montmorillonite-crosslinked GPTMS for direct methanol fuel cells. RSC Advances, 6(3): 2314 – 2322.

19.    Liu, S., Wang, L.,  Ding, Y., Liu, B.,  Han, X. and Song, Y. (2014).  Novel  sulfonated  poly(ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications. Electrochimica Acta, 130: 90 – 96.

20.    Jaafar, J., Ismail, A. F. and Matsuura, T. (2009).  Preparation  and barrier properties of SPEEK/Cloisite 15A®/TAP nanocomposite membrane for DMFC application. Journal of Membrane Science, 345(1): 119 – 127.

21.    Tohidian, M.,  Ghaffarian, S. R.,  Shakeri, S. E.,  Dashtimoghadam,  E.  and Hasani-Sadrabadi, M. M. (2013). Organically  modified  montmorillonite and  chitosan–phosphotungstic  acid  complex nanocomposites as high performance membranes for fuel cell applications. Journal of Solid State Electrochemistry, 17(8): 2123 – 2137.




Previous                    Content                    Next