Sains Malaysiana 47(11)(2018): 2601–2608
http://dx.doi.org/10.17576/jsm-2018-4711-02
Ketoksikan Akut Arsenik, Kromium dan Selenium terhadap Moluska Air Tawar di Malaysia; Filopaludina sumatrensis
dan Corbicula fluminea
(Acute
Toxicity of Arsenic, Chromium and Selenium to Malaysian Freshwater
Molluscs; Filopaludina
sumatrensis and Corbicula fluminea)
NURUL AKHMA
ZAKARIA*
& AHMAD ABAS KUTTY
Pusat Pengajian Sains Sekitaran dan Sumber
Alam, Fakulti
Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600
UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received: 30 March 2018/Accepted: 11 July 2018
ABSTRAK
Masalah pencemaran sumber
air tawar dan
kesan ketoksikan logam telah mendapat
perhatian di serata
negara. Dua
spesies organisma
air tawar daripada filum moluska Filopaludina sumatrensis dan
Corbicula fluminea didedahkan
kepada tiga
logam terpilih iaitu arsenik (As) kromium (Cr) dan selenium (Se) pada kepekatan berbeza selama 96 jam di dalam makmal terkawal.
Kadar kematian dinilai
serta kepekatan
kematian median (LC50) dan masa
kematian median (LT50) dihitung.
Nilai
LC50 dan LT50 didapati
menurun dengan pertambahan masa dan kepekatan pendedahan bagi kedua-dua spesies dan kesemua
logam. Keputusan daripada kajian
ini memperlihatkan
ketoksikan logam As, Cr dan Se semakin meningkat dengan peningkatan kepekatan dan masa pendedahan logam kepada F. sumatrensis
dan C. fluminea. Nilai LC50 96 jam
As, Cr dan Se bagi
F. sumatrensis
adalah 4.22, 3.78 dan
45.92 mg/L dan 11.84, 2.23 dan
35.63 mg/L masing-masing bagi
C. fluminea.
Keputusan
menunjukkan Cr adalah logam paling toksik terhadap F. sumatrensis dan
C.
fluminea. Trend ketoksikan
logam bagi
kedua-dua moluska ini adalah sama iaitu Cr > As >
Se.
Kata kunci:
Arsenik; ketoksikan
akut; kromium; moluska; selenium
ABSTRACT
Issues
of freshwater pollution and metal toxicity has been
gaining concern throughout the country. Two freshwater molluscs,
Filopaludina sumatrensis and Corbicula
fluminea were exposed to a range
of three metals (arsenic (As), chromium (Cr) and selenium (Se))
at varied concentrations for 96 h in the controlled laboratory
conditions. Mortality was assessed and median lethal concentrations
(LC50) and median lethal times (LT50) were calculated. It was
observed that both LC50 and LT50 values increased with a decrease
in mean exposure concentrations and times, for both species and
all metals. Toxicity of As, Cr dan Se
increased with times and exposure concentrations for both F.
sumatrensis and C. fluminea.
The 96 h LC50 values for As, Cr and Se were 4.22, 3.78 and 45.92
mg/L for F. sumatrensis and 11.84,
2.23 and 35.63 mg/L for C. fluminea,
respectively. The results indicated that Cr was the most toxic
metal to both F. sumatrensis
dan C. fluminea. The metal toxicity trend for both molluscs from most to least toxic was Cr > As > Se.
Keywords: Acute toxicity; arsenic; chromium; molluscs;
selenium
REFERENCES
Baudrimont,
M., Metivaud, J., Maury‐Brachet, R., Ribeyre, F. & Boudou, A. 1997. Bioaccumulation and metallothionein response
in the Asiatic clam (Corbicula fluminea)
after experimental exposure to cadmium and inorganic mercury.
Environmental Toxicology and Chemistry 16(10): 2096-2105.
Begum,
A., Mustafa, A.I., Amin, M.N., Banu,
N. & Chowdhury, T.R. 2013. Accumulation and histopathological effects of arsenic
in tissues of shingi fish (Stinging
Catfish) Heteropneustes fossilis
(Bloch, 1794). Journal of the Asiatic Society of Bangladesh,
Science 39(2): 221-230.
Brooke, L.T., Call,
D.J., Harting, S.L., Lindberg, C.A.,
Markee, T.P., McCauley, D.J. & Poirier, S.H. 1985. Acute Toxicity of Selenium (IV) and Selenium (VI) to Freshwater
Organisms. Center for Lake Superior
Environmental Studies, University of Wisconsin–Superior, Superior,
WI, USA.
Buikema Jr., A.L., Niederlehner, B.R. & Cairns Jr, J. 1982. Biological monitoring. Part IV- Toxicity testing. Water
Resources 16: 239-262.
El-Shenawy, N.S. 2004. Heavy-metal and microbial
depuration of the clam Ruditapes
decussatus and its effect on bivalve behavior and physiology.
Environ. Toxicol. 19: 143-153.
Elliott,
P. & zu Ermgassen,
P. 2008.
The Asian clam (Corbicula fluminea)
in the River Thames, London, England. Aquatic Invasions
3: 54-60.
Ewell,
W.S., Gorsuch, J.W., Kringle, R.O.,
Robillard, K.A. & Spiegel, R.C. 1986. Simultaneous evaluation of the acute effects of chemicals on seven
aquatic species. Environmental Toxicology and Chemistry
5(9): 831-840.
Gärdenfors,
U., Westermark, T., Emanuelsson,
U., Mutvei, H. & Waldén,
H. 1988.
Use of land-snail shells as environmental archives: Preliminary
results. Ambio 17: 347-349.
Guo,
X. & Feng, C. 2018. Biological toxicity response of
Asian clam (Corbicula fluminea)
to pollutants in surface water and sediment. Science
of the Total Environment 631: 56-70.
Graney Jr., R.L.,
Cherry, D.S. & Cairns Jr., J. 1984. The
influence of substrate, pH, diet and temperature upon cadmium
accumulation in the Asiatic clam (Corbicula fluminea)
in laboratory artificial streams. Water Research 18(7):
833-842.
Holcombe,
G.W., Phipps, G.L. & Fiandt, J.T.
1983. Toxicity of selected priority pollutants to various aquatic organisms.
Ecotoxicology and Environmental Safety 7(4): 400-409.
Huang,
H., Wu, J.Y. & Wu, J.H. 2007. Metal monitoring using
bivalve shellfish from Zhejiang Coastal water, East China Sea.
Environ. Monit.
Assess. 129: 315-320.
Hung,
T.C., Meng, P.J., Han, B.C., Chuang,
A. & Huang, C.C. 2001.
Trace metals in different species of mollusca,
water and sediment form Taiwan coastal area. Chemosphere 44:
833-841.
Ilarri,
M.I., Souza, A.T., Antunes, C., Guilhermino,
L. & Sousa, R. 2014. Influence of the invasive Asian clam Corbicula
fluminea (Bivalvia: Corbiculidae) on estuarine epibenthic
assemblages. Estuarine, Coastal and Shelf
Science 143: 12-19.
Intamat,
S., Buasriyot, P., Sriuttha,
M., Tengjaroenkul, B., & Neeratanaphan,
L. 2017.
Bioaccumulation of arsenic in aquatic plants
and animals near a municipal landfill. International
Journal of Environmental Studies 74(2): 303- 314.
JAS. 2016. Laporan Kualiti Alam Sekeliling
Malaysia 2015. Kementerian
Alam Sekitar dan
Sumber Alam,
Malaysia: Jabatan Alam Sekitar.
Kadar,
E., Salanki, J., Jugdaohsingh,
R., Powell, J.J., McCrohan, C.R. &
White, K.N. 2001.
Avoidance responses to aluminium
in the freshwater bivalve Anodonta
cygnea. Aquat. Toxicol. 55: 137-148.
Keller,
A.E. & Zam, S.G. 1991. The acute toxicity of selected metals to the freshwater mussel, Anodonta imbecilis.
Environmental Toxicology and Chemistry 10(4): 539-546.
Khangarot,
B.S., Mathur, S. & Durve,
V.S. 1982.
Comparative toxicity of heavy metals and interaction
of metals on a freshwater pulmonate
snail Lymnaea acuminata (Lamarck).
CLEAN-Soil, Air, Water 10(4): 367-375.
Khangarot,
B.S. & Ray, P.K. 1988. Sensitivity of freshwater
pulmonate snails, Lymnaea
luteola L., to heavy metals.
Bulletin of Environmental Contamination and Toxicology 41(2):
208- 213.
Köhler,
F., Sri-aroon, P. & Simonis,
J. 2012.
Filopaludina sumatrensis. The IUCN Red
List of Threatened Species 2012: http://www.iucnredlist.org/details/184851/0.
Diakses pada 10 Ogos 2017.
Lau, S., Mohamed,
M., Yen, A.T.C. & Su’Ut, S. 1998.
Accumulation of heavy metals in freshwater molluscs.
Science of the Total Environment 214(1-3): 113-121.
Liao,
C.M., Jau, S.F., Chen, W.Y., Lin, C.M.,
Jou, L.J., Liu, C.W., Liao, V.H.C. & Chang, F.J. 2008. Acute toxicity and bioaccumulation of arsenic in freshwater clam Corbicula
fluminea. Environmental
Toxicology 23(6): 702-711.
Litchfield Jr., J.T. 1949. A method
for rapid graphic solution of time-per cent effect curves. The
Journal of Pharmacology and Experimental Therapeutics 97(4):
399-408.
Litchfield, J.A.
& Wilcoxon, F. 1949. A simplified method
of evaluating dose-effect experiments. Journal of Pharmacology
and Experimental Therapeutics 96(2): 99-113.
Mance, G. 1987. Pollution Threat of Heavy Metals in Aquatic Environment.
Essex: Elsevier Science Publishers Ltd.
Mason, M.F. 1991.
Biology of Freshwater Pollution.
Ed. ke-2. New York: Longman Scientific & Technical.
Meyer, J.S.,
Santore, R.C., Bobbitt, J.P., DeBrey,
L.D., Boese, C.J., Paquin,
P.R. & Allen, H.E. 1999. Binding of
nickel and copper to fish gills predicts toxicity when water hardness
varies, but free-ion activity does not. Environmental
Science & Technology 33(6): 913-916.
Nassos,
P.A., Coats, J.R., Metcalf, R.L., Brown, D.D. & Hansen, L.G.
1980. Model ecosystem, toxicity, and uptake evaluation of 75 Se-selenite.
Bulletin of Environmental Contamination and Toxicology 24(1):
752-758.
Patrick, R., Scheier, A. & Cairns Jr, J. 1968. The
relative sensitivity of diatoms, snails, and fish to twenty common
constituents of industrial wastes. The Progressive Fish-
Culturist 30(3): 137-140.
Prasad,
M.N.V., Sajwan, K.S. & Naidu, R.
2006. Trace Element in the Environment, Biogeochemistry, Biotechnology
and Bioremediation. London: Taylor & Francis
Group.
Rehwoldt,
R., Lasko, L., Shaw, C. & Wirhowski,
E. 1973.
The acute toxicity of some heavy metal ions
toward benthic organisms. Bulletin of Environmental
Contamination and Toxicology 10(5): 291-294.
Sangeeta Das. 2012.
Toxicological effects of arsenic exposure in a freshwater teleost
fish, Channa punctatus. African Journal of Biotechnology
11(19): 4447-4454.
Shuhaimi-Othman,
M., Nadzifah, Y., Nur-Amalina,
R. & Umirah, N.S. 2013. Deriving freshwater quality criteria for copper, cadmium, aluminum
and manganese for protection of aquatic life in Malaysia.
Chemosphere 90(11): 2631-2636.
Shuhaimi-Othman,
M., Nur-Amalina, R. & Nadzifah,
Y. 2012.
Toxicity of metals to a freshwater snail, Melanoides
tuberculata. The Scientific
World Journal 2012: 1-10.
Shrivastava,
P., Saxena, A. & Swarup,
A. 2003.
Heavy metal pollution in a sewage-fed lake of
Bhopal, (M.P.) India. Lakes Reserv.
Res. Manag. 8: 1-4. https://doi.org/10.1046/j.1440-
1770.2003.00211.x
Simard,
A., Paquet, A., Jutras, C., Robitaille,
Y., Blier, P., Courtois, R. & Martel, A. 2012. North American range extension of the invasive Asian clam in a St.
Lawrence River power station thermal plume. Aquatic
Invasions 7: 81-89.
Solem,
A. 1974.
The Shall Makers, Introducing
Mollusks. New York: John Willey & Sons, Inc.
Sousa, R.,
Antunes, C. & Guilhermino, L.
2008. Ecology of
the invasive Asian clam Corbicula fluminea
(Muller 1774) in aquatic ecosystems: An overview. Annales
de Limnologie - International Journal
of Limnology 44: 85-94.
Sriuttha,
M., Tengjaroenkul, B., Intamat,
S., Phoonaploy, U., Thanomsangad,
P. & Neeratanaphan, L. 2016. Cadmium, chromium,
and lead accumulation in aquatic plants and animals near a municipal
landfill. Human and Ecological Risk Assessment 23(2): 1-14.
Tsangaris,
C., Papathanasiou, E. & Cotou,
E. 2007.
Assessment of the impact of heavy metal pollution
from a ferro-nickel smelting plant using biomarkers. Ecotoxicology
and Environmental Safety 66(2): 232-243.
Voigt,
C.L., da Silva, C.P., Doria, H.B., Ferreira
Randi, M.A., de Oliveira Ribeiro, C.A. & de Campos, S.X. 2014. Bioconcentration
and bioaccumulation of metal in freshwater Neotropical fish Geophagus
brasiliensis. Environmental
Science and Pollution Research 22: 8242-8252.
Zuykov,
M., Pelletier, E. & Harper, D.A. 2013. Bivalve mollusks in metal pollution
studies: from bioaccumulation to biomonitoring. Chemosphere
93(2): 201-208.
*Corresponding author; email: nurulakhmazakaria@yahoo.com