Sains Malaysiana 47(11)(2018): 2667–2676

http://dx.doi.org/10.17576/jsm-2018-4711-09

 

Kajian Elektrolit Polimer berasaskan Getah Asli Terubah Suai (MG49) dalam Sel Suria Terpeka Pewarna

(An Investigation of Modified Natural Rubber-Based (MG49) Polymer Electrolyte in Dye-Sensitized Solar Cells)

 

SHUHIB MAMAT1, MOHAMAD FAIZZI1, MOHD SUKOR SU’AIT1*, NORASIKIN AHMAD LUDIN1, KAMARUZZAMAN SOPIAN1, NURUL AKMALIAH DZULKURNAIN2, AZIZAN AHMAD3, LOH KEE SHYUAN4, LEE TIAN KHOON4 & DANIEL BRANDELL5

 

1Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2UM Power Energy Dedicated Advanced Center (UMPEDAC), Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

3School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Fuel Cell Institute (FCI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

5Department of Chemistry, Ångström Laboratory, Structural Chemistry, Uppsala University, Sweden

 

Received: 7 March 2018/Accepted: 13 July 2018

 

ABSTRAK

Kajian terhadap elektrolit polimer berasaskan 49% poli(metil metakrilat) cangkukan getah asli (MG49) dengan natrium iodida (NaI) dalam aplikasi sel suria terpeka pewarna (DSSC) telah dijalankan. Kesan kepekatan garam ke atas sifat elektrokimia, morfologi, kimia dan kehabluran MG49-NaI telah dianalisis menggunakan spektroskopi impedan elektrokimia (EIS), mikroskopi imbasan elektron (SEM), spektroskopi inframerah transformasi Fourier (FTIR) dan pembelauan sinar-X (XRD). Morfologi keratan rentas menunjukkan struktur membran berliang mikro dan homogen. Nilai kekonduksian ion tertinggi pada suhu bilik bagi membran elektrolit polimer MG49-NaI pada penambahan 30 % bt. garam NaI adalah 8.86 × 10-5 S cm-1. Analisis inframerah menunjukkan interaksi antara atom oksigen dengan ion natrium berlaku pada kumpulan berfungsi eter (C–O–C) dan karbonil (C=O). Sifat kehabluran MG49-NaI polimer elektrolit didapati berkurang dengan peningkatan kepekatan garam. Analisis kronoamperometri memberikan nilai nombor pindahan ion (tion) sebanyak 0.92 membuktikan elektrolit polimer MG49-NaI (30 % bt.) adalah pengkonduksi jenis ion. Ujian prestasi DSSC keadaan pepejal bagi FTO/TiO2-N719/MG49-NaI (30 % bt.)/I2/Pt sampel telah memberikan keputusan kecekapan setinggi 0.26% dengan prestasi fotovoltaik, Jsc, Voc dan ff masing-masing adalah 1.30 mA cm-2, 0.56 V dan 34.91. Membran dalam keadaan pepejal-kuasi atau separa pepejal memberikan nilai kecekapan 3.48% dengan nilai Voc = 0.75 V, Jsc = 12.71 mA cm-2 dan FF = 37.70.

 

Kata kunci: Elektrolit polimer; natrium iodida (NaI); sel suria terpeka pewarna (DSSC); 49% poli(metil metakrilat) cangkukan getah asli (MG49)

ABSTRACT

A dye-sensitized solar cell (DSSC) was fabricated utilizing 49% poly(methyl methacrylate)-grafted natural rubber (MG49) with sodium iodide (NaI) as ion conducting membrane. The effect of NaI concentrations on electrochemical, morphological, chemical interaction and the crystallinity properties of MG49 has been analyzed by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively. The highest ionic conductivity of 8.86 × 10-5 S cm-1 at room temperature for MG49-NaI (30 wt. %) polymer electrolyte membrane is achieved. The cross-sectional morphology showed a homogenous microporous structure of the membrane. Infrared analysis indicated that the interactions occurred between oxygen atoms from ether (C–O–C) and carbonyl (C=O) group of the polymer with sodium ions. XRD analysis showed the property of semi-crystalline phase reduced with the increases of salt concentration. The chronoamperometry analysis of MG49-NaI (30 wt. %) give an ionic transference number value of 0.92, proving that the polymer electrolyte membrane is ionic conductor and predominates by the number of ions presence. A fabricated solid-state dye-sensitized solar cell (DSSC) of FTO/TiO2-N719/MG49-NaI(30 wt. %)-I2/Pt under light intensity of 100 mW cm-2, gives results of the photovoltaic responses with Jsc, Voc, ff and efficiency of 1.30 mA cm-2, 0.56 V, 34.91 and 0.26%, respectively. In quasi-solid DSSC, an effieciency of 3.48% with Voc = 0.75 V, Jsc = 12.71 mA cm-2 and FF = 37.70 was achieved.

 

Keywords: Dye-sensitized solar cell (DSSC); polymer electrolyte; sodium iodide (NaI); 49% poly(methyl methacrylate) grafted natural rubber (MG49)

 

REFERENCES

 

Ahmad, A., Lien, P.C. & Su’ait, M.S. 2010. Elektrolit pepejal polimer 49% poli (metil metakrilat) cangkukan getah asli - litium tetrafluoroborat. Sains Malaysiana 39(1): 65–71.

Ahmad, A., Rahman, M.Y.A., Harun, H., Su’ait, M.S. & Yarmo, M.A. 2012. Preparation and characterization of 49% poly (methyl methacrylate) grafted natural rubber (MG49)- stannum (IV) oxide (SnO2)-lithium salt based composite polymer electrolyte. International Journal of Electrochemical Science 7: 1-17.

Ali, A.M.M., Subban, R.H.Y., Bahron, H., Yahya, M.Z.A. & Kamisan, A.S. 2013. Investigation on modified natural rubber gel polymer electrolytes for lithium polymer battery. Journal of Power Sources 244: 636-640.

Ataollahi, N., Ahmad, A., Hamzah, H., Rahman, M.Y.A. & Mohamed, N.S. 2012. Preparation and characterization of PVdF-HFP/MG49 based polymer blend electrolyte. International Journal Electrochemical Science 7: 6693-6703.

Bella, F. 2015. Polymer electrolytes and perovskites: Lights and shadows in photovoltaic devices. Electrochima Acta 175: 151-161.

Bruce, P.G., Evans, J. & Vincent, C.A. 1988. Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics 28-30: 918-922.

Buraidah, M.H., Shah, S., Teo, L.P., Chowdhury, F.I., Careem, M.A., Albinsson, I. & Mellander, B.E. 2017. High efficient dye sensitized solar cells using phthaloylchitosan based gel polymer electrolytes. Electrochimica Acta 245: 846-853.

Burschka, J., Pellet, N., Moon, S.J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K. & Grätzel, M. 2013. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458): 316-319.

Glasse, M.D., Idris, R., Latham, R.J., Linford, R.G. & Schlindwein, W.S. 2002. Polymer electrolytes based on modified natural rubber. Solid State Ionics 147(3-4): 289-294.

Grätzel, M. 2003. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 4(2): 145-153.

Green, M.A. 2001. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications 9(2): 123-135.

Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., Ho-Baillie, A.W.Y. 2017. Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications 25(4): 333-334.

Ibrahim, S., Ahmad, A. & Mohamed, N.S. 2018. Comprehensive studies on polymer electrolyte and dye-sensitized solar cell developed using castor oil-based polyurethane. Journal of Solid State Electrochemistry 22(2): 461-470.

Ibrahim, S., Ahmad, A. & Mohamed, N.S. 2015. Characterization of novel castor oil-based polyurethane polymer electrolytes. Polymers 7(4): 747-759.

Kakiage, K., Aoyama, Y., Yano, T., Oya, K., Fujisawa, J.I. & Hanaya, M. 2015. Highly-efficient DSSCs with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical Communication 51(88): 15894-15897.

Kumutha, K., Alias, Y. & Said, R. 2005. FTIR and thermal studies of modified natural rubber based polymer electrolytes. Ionics 11(5-6): 472-476.

Lee, T.K., Ahmad, A., Farina, Y., Dahlan, H.M. & Rahman, M.Y.A. 2011. Preparation and characterization of solid polymeric electrolyte of poly(vinyl) chloride-low molecular weight LENR50 (70/30)-LiClO4. Polymers and Polymer Composites 21(7): 449-456.

Malaysia Energy Information Hub (MEIH). http://meih.st.gov. my/statistics. Diakses pada 28 Januari 2018.

Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K. & Grätzel, M. 2014. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature Chemistry 6: 242-247.

Mohan, K., Dolui, S., Chandra, B., Bora, A., Sharma, S. & Kumar, S. 2017. A highly stable and efficient quasi solid state dye sensitized solar cell based on polymethyl methacrylate (PMMA)/carbon black (CB) polymer gel electrolyte with improved open circuit voltage. Electrochimica Acta 247: 216-228.

Nazeeruddin, M.K., Angelis, F.D., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B. & Grätzel, M. 2005. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 127(48): 16835- 16847.

Nazir, K., Aziz, A.F., Yahya, M.Z.A. & Ali, A.M.M. 2017. Ionic conductivity studies of epoxidized poly(methyl methacrylate)- grafted natural rubber based gel polymer electrolyte for dye sensitized polymer solar cell. AIP Conference Proceedings 1877: 040003-1 - 040003-8.

Ng, H.M., Ramesh, S. & Ramesh, K. 2015. Efficiency improvement by incorporating 1-methyl-3-propylimidazolium iodide ionic liquid in gel polymer electrolytes for dye-sensitized solar cells. Electrochimica Acta 175: 169-175.

O’regan, B. & Grätzel, M. 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346): 737-740.

Rahman, M.Y.A., Salleh, M.M., Talib, I.A. & Yahaya, M. 2004. Effect of ionic conductivity of a PVC-LiClO4 based solid polymeric electrolyte on the performance of solar cells of ITO/TiO2/PVC-LiClO4/graphite. Journal of Power Sources 133(2): 293-297.

Silakul, P. & Magaraphan R. 2013. Gel polymer electrolyte from poly(acrylamide) coated on natural rubber latex by topology-controlled emulsion polymerization for dye sensitized solar cells application. Advanced Materials Research 747: 325-328.

Silakul, P. & Magaraphan, R. 2014. Gel polymer electrolyte from ozonolysis of poly(3-(trimethoxysilyl) propyl methacrylate) graft on natural rubber latex for natural dye sensitized solar cells application. Advanced Materials Research 844: 357- 360.

Silakul, P. & Magaraphan, R. 2017. Polymer electrolyte developed from natural rubber -polyacrylic acid co trimethoxysilyl propyl methacrylate grafted fumed silica and its application to dye sensitized solar cell. Polymer Composites doi: 10.1002/ pc.24648 (in press).

Suruhanjaya Tenaga. 2016. Malaysia Energy Statistics Handbook 2016. Putrajaya: Suruhanjaya Tenaga.

Su’ait, M.S., Rahman, M.Y.A. & Ahmad, A. 2015. Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar Energy 115: 452-470.

Su’ait, M.S., Noor, S.A.M., Ahmad, A., Hamzah, H. & Rahman, M.Y.A. 2012. Preparation and characterization of blended solid polymer electrolyte 49% poly(methyl methacrylate)- grafted natural rubber: Poly(methyl methacrylate)-lithium tetrafluoroborate. Journal of Solid State Electrochemistry 16(6): 2275-2282.

Su’ait, M.S., Ahmad, A., Hamzah, H. & Rahman, M.Y.A. 2009. Preparation and characterization of PMMA–MG49–LiClO4 solid polymeric electrolyte. Journal of Physics D: Applied Physics 42(5): 55410.

TianKhoon, L., Ataollahi, N., Hassan, N.H. & Ahmad, A. 2016. Studies of porous solid polymeric electrolytes based on poly(vinylidene fluoride) and poly(methyl methacrylate) grafted natural rubber for applications in electrochemical devices. Journal of Solid State Electrochemistry 20(1): 203-213.

TianKhoon, L., Hassan, N.H., Rahman, M.Y.A., Vedarajan, R., Matsumi, N. & Ahmad, A. 2015. One-pot synthesis nano-hybrid ZrO2–TiO2 fillers in 49% poly(methyl methacrylate) grafted natural rubber (MG49) based nano-composite polymer electrolyte for lithium ion battery application. Solid State Ionics 276: 72-79.

Waterman, J.A., Heij, G.E.L. & Hoorn, H.V. 1967. Grafting of methyl methacrylate on isoprene rubber. Journal of Chemical Technology and Biotechnology 17: 121-125.

Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L. & Luo, G. 2015. Electrolytes in dye-sensitized solar cells. Chemical Reviews 115(5): 2136-2173.

 

*Corresponding author; email: mohdsukor@ukm.edu.my

 

 

 

 

 

 

previous