Sains Malaysiana 47(11)(2018): 2657–2666
http://dx.doi.org/10.17576/jsm-2018-4711-08
A New Copper Ionophore N1,
N3-Bis
[[3,5-Bis(Trifluoromethyl)Phenyl] Carbamothioyl] Isophtalamide
for Potentiometric Sensor
(Ionofor Kuprum Baru N1,N3-Bis [[3,5-Bis(Trifluorometil)Fenil]-Karbamotioil]
Isoftalamida sebagai Sensor Potensiometri)
KOOK SHIH
YING,
LEE
YOOK
HENG*,
NURUL
IZZATY
HASSAN
& SITI AISHAH HASBULLAH
School
of Chemical Sciences and Food Technology, Faculty of Science and
Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Received:
28 February 2018/Accepted: 6 July 2018
ABSTRACT
A copper ion sensor based on
a new bis-thiourea compound N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide
(or TPC) as neutral carrier was investigated. The immobilization
of the TPC into poly(n-butyl acrylate) (pBA)
membrane via drop casting and the sensor was characterized by
potentiometry. The sensor fabricated from TPC only showed a good Nernstian response
towards copper ion with a sensitivity slope of 28.81±0.53mV/decade
in the range of 1.0 × 10-6 - 1.0 × 10-4 M.
The limit of detection of this sensor was found to be 6.11 × 10-7 M
and with short sensor response time (60 - 80 s). This sensor also
demonstrated reversibility and reproducibility with 3.69% and
1.84% (Relative Standard Deviation, RSD), respectively. Based on the separate solution method
(SSM),
the logarithm selectivity coefficients were better than -2.00
for monovalent, divalent and trivalent cations and this confirmed
that the sensor exhibited good selectivity towards copper ion.
The sensor could attain optimum function without the need in the
inclusion of either lipophilic anions as a membrane additive nor
plasticizer as a membrane softener. Thus, these are the main advantages.
The addition of lipophilic anions into the pBA membrane could
cause the sensitivity and selectivity of the copper ion sensor
based on ionophore TPC
to deteriorate.
Keywords: Anionic lipophilic
salt; neutral carrier; N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide
(TPC);
potentiometric copper ion sensor
ABSTRAK
Sensor ion kuprum yang berasaskan
kepada sebatian bis-tiourea baru, N1,N3-bis[[3,5-bis(trifluorometil)fenil]karbamotioil]isoftalamida
(TPC)
sebagai pembawa neutral telah dikaji. Pencirian sensor dijalankan
melalui kaedah potensiometri dan TPC dipegunkan ke dalam membran poli(n-butil
akrilat) (pBA) secara penyalutan. Sensor ion yang direka bentuk
dengan menggunakan TPC sahaja menunjukkan rangsangan Nernstian,
iaitu 28.81±0.53mV/dekad dengan julat kelinearan daripada 1.0
× 10-6
– 1.0 × 10-4 M. Had pengesanan adalah serendah 6.11 × 10-7
M dan masa rangsangan ialah 60 hingga 80 saat. Nilai
sisihan piawai relatif bagi ujian kebolehbalikan dan kebolehhasilan
sensor ini masing-masing ialah 3.69% dan 1.84%. Berdasarkan kepada
kaedah larutan berasingan (SSM),
nilai pekali logaritma kepilihan bagi sensor ini adalah lebih
baik daripada -2.00 bagi kation monovalen, divalen dan trivalen
seterusnya memaparkan kepilihan yang baik terhadap ion kuprum.
Kebaikan sensor ini adalah bahan penambahan membran seperti anion
lipofilik dan pelembut membran seperti pemplastik tidak diperlukan
untuk mencapai fungsi sensor yang optimum. Sebaliknya, penambahan
anion lipofilik dalam membran pBA boleh menjejaskan kepekaan dan
kepilihan sensor ion kuprum berasaskan ionofor TPC.
Kata kunci: Garam anion lipofilik; kuprum ion sensor potensiometri;
N1,N3-bis[[3,5bis(trifluorometil)fenil]karbamotioil]isoftalamida
(TPC); pembawa neutral
REFERENCES
Alva,
S. 2008. Pembinaan sensor ion dan biosensor potentiometri pepejal
berasaskan elektrod bercetak skrin dan filem fotopolimer metakrilik-akrilik.
Tesis Ph.D. Fakulti Sains & Teknologi, Universiti Kebangsaan
Malaysia (Unpublished).
Alva,
S., Lee, Y.H. & Ahmad, M. 2005. A new lithium ion selective
sensors based on self plasticising acrylic films and disposable
screen printed electrode. 2005 Asian Conference on Sensors
and the International Conference on New Techniques in Pharmaceutical
and Biomedical Research - Proceedings 2005: 48-51.
Amemiya,
S., Buhlmann, P., Pretsch, E., Rusterholz, B. & Umezawa, Y.
2000. Cationic or anionic sites? Selectivity optimization of ion-selective
electrodes based on charged ionophores. Analytical Chemistry
72(7): 1618-1631.
Buck,
R.P. & Lindneri, E.R.N. 1994. Recomendations for nomenclature
of ion-selective electrodes. Pure and Applied Chemistry 66(12):
2527-2536.
Faridbod,
F., Ganjali, M.R., Dinarvand, R. & Norouzi, P. 2008. Schiff’s
Bases and crown ethers as supramolecular sensing materials in
the construction of potentiometric membrane sensors. Sensors
8: 1645-1703.
Ghanei-motlagh,
M., Fayazi, M. & Taher, M.A. 2014. On the potentiometric response
of mercury (II) membrane sensors based on symmetrical thiourea
derivatives - Experimental and theoretical approaches. Sensors
& Actuators: B. Chemical 199: 133-141.
Huang,
M.R., Gu, G.L., Shi, F.Y. & Li, X.G. 2012. Development of
potentiometric lead ion sensors based on ionophores bearing oxygen/sulfur-containing
functional groups. Fenxi Huaxue/Chinese Journal of Analytical
Chemistry 40(1): 50-58.
Jumal,
J., Yamin, B.M., Ahmad, M. & Lee, Y.H. 2012. Mercury ion-selective
electrode with self-plasticizing poly (n-buthylacrylate) membrane
based on 1, 2-bis- (N’ - benzoylthioureido) cyclohexane as ionophore.
APCBEE Procedia 3: 116-123.
Khairi.
2016. New thiourea compounds as ionophores for potentiometric
sensors of HP2O4- and Hg2+. Tesis Ph.D, Fakulti Sains & Teknologi, Universiti
Kebangsaan Malaysia (Unpublished).
Khan,
M.A., Mehmood, S., Ullah, F., Khattak, A. & Alam Zeb, M. 2017.
Health risks assessment diagnosis of toxic chemicals (heavy metals)
via food crops consumption irrigated with wastewater. Sains
Malaysiana 46(6): 917-924.
Kisiel,
A., Woznica, E., Wojciechowski, M., Bulska, E., Maksymiuk, K.
& Michalska, A. 2015. Potentiometric layered membranes. Sensors
& Actuators: B. Chemical 207: 995-1003.
Kook, S.Y. & Lee,
Y.H. 2017. A screen-printed copper ion sensor with photocurable
poly(n-butyl acrylate) membrane based on ionophore o-xylylene
bis(N,N-diisobutyl dithiocarbamete). Malaysian Journal of Analytical
Sciences 21(1): 1-12.
Kopylovich, M.N., Mahmudov, K.T.
& Pombeiro, A.J.L. 2011. Poly(vinyl) chloride membrane copper-selective
electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo) butane-
1,3-dione. Journal of Hazardous Materials 186: 1154-1162.
Lazo, A.R., Bustamante, M., Jimenez,
J., Arada, M.A. & Yazdani- Pedram, M. 2006. Preparation and
study of a 1-furoyl3,3- diethylthiourea electrode. J. Chil.
3: 975-978.
Lee, Y.H. & Hall, E.A.H. 2001.
Assessing a photocured self-plasticised acrylic membrane recipe
for Na+ and K+ ion selective electrodes. Analytica Chimica
Acta 443(1): 25-40.
Lee, Y.H. & Hall, E.A.H. 1996.
Methacrylate-acrylate based polymers of low plasticiser content
for potassium ion-selctive membranes. Analytica Chimica Acta
324(1): 47-56.
Motlagh, M.G., Taher, M.A. &
Ali, A. 2010. Electrochimica Acta PVC membrane and coated graphite
potentiometric sensors based on 1-phenyl-3-pyridin-2-yl-thiourea
for selective determination of iron (III). Electrochimica Acta
55(22): 6724-6730.
Nurulain, K., Sahilah, A.M., Fatin,
I.N. & Hassan, N.I. 2016. Characterization and antimicrobial
studies of five substituted bis-thioureas. Malaysia Journal
of Analytical Sciences 20(1): 85-90.
Perez-Marín, L., Castro, M., Otazo-Sánchez,
E. & Cisneros, G.A. 2000. Density functional study of molecular
recognition and reactivity of thiourea derivatives used in sensors
for heavy metal polluting cations. International Journal of
Quantum Chemistry 80(4-5): 609-622.
Pérez, M.D.L.A.A., Yanes, S.L. &
Cardona, M. 2010. Copper(II) selective electrodes based on 1-furoyl-3,3’-diethylthiourea
as a neutral carrier. Journal of the Chilean Chemical Society
3: 371-373.
Saeed, A., Flörke, U. & Erben,
M.F. 2014. A review on the chemistry, coordination, structure
and biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas.
Journal of Sulfur Chemistry 35(3): 318-355.
Sajab, M.S., Chia, C.H., Zakaria,
S. & Sillanpää, M. 2017. Adsorption of heavy metal ions on
surface of functionalized oil palm empty fruit bunch fibres: Single
and binary systems. Sains Malaysiana 46(1): 157-165.
Siswanta, D., Wulandari, Y.D. &
Jumina, J. 2016. Synthesis of poly(benzyleugenol) and its application
as an ionophore for a potassium ion-selective electrode. Eurasian
Journal of Analytical Chemistry 11(3): 115-125.
Umezawa, Y., Umezawa, K., Tohda,
K. & Amemiya, S. 2000. Potentiometric selectivity coefficients
of ion selective electrodes. Pure and Applied Chemistry 72(10):
1851-2082.
Wilson, D., de los Ángeles Arada,
M., Alegret, S. & del Valle, M. 2010. Lead(II) ion selective
electrodes with PVC membranes based on two bis-thioureas as ionophores:
1,3-bis(N’- benzoylthioureido)benzene and 1,3-bis(N’-furoylthioureido)
benzene. Journal of Hazardous Materials 181(1-3): 140-146.
Woźnica, E., Mieczkowski, J.
& Michalska, A. 2011. Electrochemical evidences and consequences
of significant differences in ions diffusion rate in polyacrylate-based
ion-selective membranes. The Analyst 136: 4787.
Yew, P.L. & Lee, Y.H. 2014.
A reflectometric ion sensor for potassium based on acrylic microspheres.
Sensors and Actuators, B: Chemical 191: 719-726.
*Corresponding author;
email: leeyookheng@yahoo.co.uk