Sains Malaysiana 47(11)(2018): 2657–2666

http://dx.doi.org/10.17576/jsm-2018-4711-08

 

A New Copper Ionophore N1, N3-Bis [[3,5-Bis(Trifluoromethyl)Phenyl] Carbamothioyl] Isophtalamide for Potentiometric Sensor

(Ionofor Kuprum Baru N1,N3-Bis [[3,5-Bis(Trifluorometil)Fenil]-Karbamotioil] Isoftalamida sebagai Sensor Potensiometri)

 

KOOK SHIH YING, LEE YOOK HENG*, NURUL IZZATY HASSAN & SITI AISHAH HASBULLAH

 

School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 28 February 2018/Accepted: 6 July 2018

 

ABSTRACT

A copper ion sensor based on a new bis-thiourea compound N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide (or TPC) as neutral carrier was investigated. The immobilization of the TPC into poly(n-butyl acrylate) (pBA) membrane via drop casting and the sensor was characterized by potentiometry. The sensor fabricated from TPC only showed a good Nernstian response towards copper ion with a sensitivity slope of 28.81±0.53mV/decade in the range of 1.0 × 10-6 - 1.0 × 10-4 M. The limit of detection of this sensor was found to be 6.11 × 10-7 M and with short sensor response time (60 - 80 s). This sensor also demonstrated reversibility and reproducibility with 3.69% and 1.84% (Relative Standard Deviation, RSD), respectively. Based on the separate solution method (SSM), the logarithm selectivity coefficients were better than -2.00 for monovalent, divalent and trivalent cations and this confirmed that the sensor exhibited good selectivity towards copper ion. The sensor could attain optimum function without the need in the inclusion of either lipophilic anions as a membrane additive nor plasticizer as a membrane softener. Thus, these are the main advantages. The addition of lipophilic anions into the pBA membrane could cause the sensitivity and selectivity of the copper ion sensor based on ionophore TPC to deteriorate.

 

Keywords: Anionic lipophilic salt; neutral carrier; N1,N3-bis[[3,5-bis(trifluoromethyl)phenyl]carbamothioyl]isophthalamide (TPC); potentiometric copper ion sensor

 

ABSTRAK

Sensor ion kuprum yang berasaskan kepada sebatian bis-tiourea baru, N1,N3-bis[[3,5-bis(trifluorometil)fenil]karbamotioil]isoftalamida (TPC) sebagai pembawa neutral telah dikaji. Pencirian sensor dijalankan melalui kaedah potensiometri dan TPC dipegunkan ke dalam membran poli(n-butil akrilat) (pBA) secara penyalutan. Sensor ion yang direka bentuk dengan menggunakan TPC sahaja menunjukkan rangsangan Nernstian, iaitu 28.81±0.53mV/dekad dengan julat kelinearan daripada 1.0 × 10-6 – 1.0 × 10-4 M. Had pengesanan adalah serendah 6.11 × 10-7 M dan masa rangsangan ialah 60 hingga 80 saat. Nilai sisihan piawai relatif bagi ujian kebolehbalikan dan kebolehhasilan sensor ini masing-masing ialah 3.69% dan 1.84%. Berdasarkan kepada kaedah larutan berasingan (SSM), nilai pekali logaritma kepilihan bagi sensor ini adalah lebih baik daripada -2.00 bagi kation monovalen, divalen dan trivalen seterusnya memaparkan kepilihan yang baik terhadap ion kuprum. Kebaikan sensor ini adalah bahan penambahan membran seperti anion lipofilik dan pelembut membran seperti pemplastik tidak diperlukan untuk mencapai fungsi sensor yang optimum. Sebaliknya, penambahan anion lipofilik dalam membran pBA boleh menjejaskan kepekaan dan kepilihan sensor ion kuprum berasaskan ionofor TPC.

 

Kata kunci: Garam anion lipofilik; kuprum ion sensor potensiometri; N1,N3-bis[[3,5bis(trifluorometil)fenil]karbamotioil]isoftalamida (TPC); pembawa neutral

REFERENCES

Alva, S. 2008. Pembinaan sensor ion dan biosensor potentiometri pepejal berasaskan elektrod bercetak skrin dan filem fotopolimer metakrilik-akrilik. Tesis Ph.D. Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia (Unpublished).

Alva, S., Lee, Y.H. & Ahmad, M. 2005. A new lithium ion selective sensors based on self plasticising acrylic films and disposable screen printed electrode. 2005 Asian Conference on Sensors and the International Conference on New Techniques in Pharmaceutical and Biomedical Research - Proceedings 2005: 48-51.

Amemiya, S., Buhlmann, P., Pretsch, E., Rusterholz, B. & Umezawa, Y. 2000. Cationic or anionic sites? Selectivity optimization of ion-selective electrodes based on charged ionophores. Analytical Chemistry 72(7): 1618-1631.

Buck, R.P. & Lindneri, E.R.N. 1994. Recomendations for nomenclature of ion-selective electrodes. Pure and Applied Chemistry 66(12): 2527-2536.

Faridbod, F., Ganjali, M.R., Dinarvand, R. & Norouzi, P. 2008. Schiff’s Bases and crown ethers as supramolecular sensing materials in the construction of potentiometric membrane sensors. Sensors 8: 1645-1703.

Ghanei-motlagh, M., Fayazi, M. & Taher, M.A. 2014. On the potentiometric response of mercury (II) membrane sensors based on symmetrical thiourea derivatives - Experimental and theoretical approaches. Sensors & Actuators: B. Chemical 199: 133-141.

Huang, M.R., Gu, G.L., Shi, F.Y. & Li, X.G. 2012. Development of potentiometric lead ion sensors based on ionophores bearing oxygen/sulfur-containing functional groups. Fenxi Huaxue/Chinese Journal of Analytical Chemistry 40(1): 50-58.

Jumal, J., Yamin, B.M., Ahmad, M. & Lee, Y.H. 2012. Mercury ion-selective electrode with self-plasticizing poly (n-buthylacrylate) membrane based on 1, 2-bis- (N’ - benzoylthioureido) cyclohexane as ionophore. APCBEE Procedia 3: 116-123.

Khairi. 2016. New thiourea compounds as ionophores for potentiometric sensors of HP2O4- and Hg2+. Tesis Ph.D, Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia (Unpublished).

Khan, M.A., Mehmood, S., Ullah, F., Khattak, A. & Alam Zeb, M. 2017. Health risks assessment diagnosis of toxic chemicals (heavy metals) via food crops consumption irrigated with wastewater. Sains Malaysiana 46(6): 917-924.

Kisiel, A., Woznica, E., Wojciechowski, M., Bulska, E., Maksymiuk, K. & Michalska, A. 2015. Potentiometric layered membranes. Sensors & Actuators: B. Chemical 207: 995-1003.

Kook, S.Y. & Lee, Y.H. 2017. A screen-printed copper ion sensor with photocurable poly(n-butyl acrylate) membrane based on ionophore o-xylylene bis(N,N-diisobutyl dithiocarbamete). Malaysian Journal of Analytical Sciences 21(1): 1-12.

Kopylovich, M.N., Mahmudov, K.T. & Pombeiro, A.J.L. 2011. Poly(vinyl) chloride membrane copper-selective electrode based on 1-phenyl-2-(2-hydroxyphenylhydrazo) butane- 1,3-dione. Journal of Hazardous Materials 186: 1154-1162.

Lazo, A.R., Bustamante, M., Jimenez, J., Arada, M.A. & Yazdani- Pedram, M. 2006. Preparation and study of a 1-furoyl3,3- diethylthiourea electrode. J. Chil. 3: 975-978.

Lee, Y.H. & Hall, E.A.H. 2001. Assessing a photocured self-plasticised acrylic membrane recipe for Na+ and K+ ion selective electrodes. Analytica Chimica Acta 443(1): 25-40.

Lee, Y.H. & Hall, E.A.H. 1996. Methacrylate-acrylate based polymers of low plasticiser content for potassium ion-selctive membranes. Analytica Chimica Acta 324(1): 47-56.

Motlagh, M.G., Taher, M.A. & Ali, A. 2010. Electrochimica Acta PVC membrane and coated graphite potentiometric sensors based on 1-phenyl-3-pyridin-2-yl-thiourea for selective determination of iron (III). Electrochimica Acta 55(22): 6724-6730.

Nurulain, K., Sahilah, A.M., Fatin, I.N. & Hassan, N.I. 2016. Characterization and antimicrobial studies of five substituted bis-thioureas. Malaysia Journal of Analytical Sciences 20(1): 85-90.

Perez-Marín, L., Castro, M., Otazo-Sánchez, E. & Cisneros, G.A. 2000. Density functional study of molecular recognition and reactivity of thiourea derivatives used in sensors for heavy metal polluting cations. International Journal of Quantum Chemistry 80(4-5): 609-622.

Pérez, M.D.L.A.A., Yanes, S.L. & Cardona, M. 2010. Copper(II) selective electrodes based on 1-furoyl-3,3’-diethylthiourea as a neutral carrier. Journal of the Chilean Chemical Society 3: 371-373.

Saeed, A., Flörke, U. & Erben, M.F. 2014. A review on the chemistry, coordination, structure and biological properties of 1-(acyl/aroyl)-3-(substituted) thioureas. Journal of Sulfur Chemistry 35(3): 318-355.

Sajab, M.S., Chia, C.H., Zakaria, S. & Sillanpää, M. 2017. Adsorption of heavy metal ions on surface of functionalized oil palm empty fruit bunch fibres: Single and binary systems. Sains Malaysiana 46(1): 157-165.

Siswanta, D., Wulandari, Y.D. & Jumina, J. 2016. Synthesis of poly(benzyleugenol) and its application as an ionophore for a potassium ion-selective electrode. Eurasian Journal of Analytical Chemistry 11(3): 115-125.

Umezawa, Y., Umezawa, K., Tohda, K. & Amemiya, S. 2000. Potentiometric selectivity coefficients of ion selective electrodes. Pure and Applied Chemistry 72(10): 1851-2082.

Wilson, D., de los Ángeles Arada, M., Alegret, S. & del Valle, M. 2010. Lead(II) ion selective electrodes with PVC membranes based on two bis-thioureas as ionophores: 1,3-bis(N’- benzoylthioureido)benzene and 1,3-bis(N’-furoylthioureido) benzene. Journal of Hazardous Materials 181(1-3): 140-146.

Woźnica, E., Mieczkowski, J. & Michalska, A. 2011. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes. The Analyst 136: 4787.

Yew, P.L. & Lee, Y.H. 2014. A reflectometric ion sensor for potassium based on acrylic microspheres. Sensors and Actuators, B: Chemical 191: 719-726.

 

*Corresponding author; email: leeyookheng@yahoo.co.uk

 

 

 

 

 

 

previous