Sains Malaysiana 47(11)(2018): 2917–2925

http://dx.doi.org/10.17576/jsm-2018-4711-35

 

Discrete Event Simulation and Data Envelopment Analysis Models for Selecting the Best Resource Allocation Alternative at an Emergency Department’s Green Zone

(Simulasi Peristiwa Diskret dan Analisis Penyampulan Data untuk Pemilihan Alternatif Pengagihan Sumber yang Terbaik di Zon Hijau Jabatan Kecemasan)

 

NAZHATUL SAHIMA MOHD YUSOFF1, CHOONG-YEUN LIONG2*, ABU YAZID MD NOH3 & WAN ROSMANIRA ISMAIL2

 

1Faculty of Computer Sciences & Mathematics, Universiti Teknologi MARA (UiTM) Cawangan Kelantan, 18500 Machang, Kelantan Darul Naim, Malaysia

 

2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Emergency Department, Hospital Universiti Sains Malaysia (HUSM), Jalan Raja Perempuan Zainab 2, 16150 Kota Bharu, Kelantan Darul Naim, Malaysia

 

Received: 18 September 2017/Accepted: 19 July 2018

 

ABSTRACT

The Green Zone of Emergency Department Hospital Universiti Sains Malaysia (EDHUSM) which provides treatment for non-critical cases contributes partly to the hustle and bustle in the emergency department. The imbalance of doctors and nurses with the patient ratio which forms the resources’ bottleneck further results to the long patients’ waiting time especially after the office hours and during weekends and public holidays. Collectively, this disproportion and bottlenecks roots up the current problem faced by Green Zone EDHUSM which constantly fails to achieve the KPIs set by the hospital. Henceforth, this study focuses on the best resource allocation of doctors and nurses for shifts during the weekdays and for shifts during weekends and public holidays. The hybrid method of Discrete Event Simulation, and Data Envelopment Analysis models such as BCC-input oriented and Super-Efficiency, were deployed to obtain the best resource allocation for the two groups of shift. The method produced a series of resources allocation alternatives for doctors and nurses with a total of 64 alternatives for weekdays and 729 alternatives for weekends and public holidays. The results show that the best allocation for doctors and nurses during weekdays are three doctors and three nurses serving for every shift, while during weekends and public holidays, a combination of four doctors and four nurses for every shift are the best. The proposed combinations have reduced the average waiting time, optimized the utilization of doctors and nurses, and managed to increase the number of patients served during weekdays, weekends and public holidays.

 

Keywords: BCC model; data envelopment analysis; discrete event simulation; efficiency scores; simulation; super efficiency model

 

ABSTRAK

Zon Hijau Jabatan Kecemasan Hospital Universiti Sains Malaysia (JKHUSM) yang memberikan rawatan untuk kes yang tidak kritikal merupakan antara penyumbang kepada kesibukan dan kesesakan di JKHUSM. Ketakseimbangan antara jumlah doktor dan jururawat dengan nisbah pesakit mengakibatkan kesendatan sumber yang menyebabkan purata masa menunggu pesakit yang panjang terutamanya selepas waktu pejabat bagi hari bekerja dan pada cuti hujung minggu dan kelepasan am. Secara kolektif, ketakseimbangan dan kesendatan ini merupakan faktor utama kepada masalah yang dialami di Zon Hijau JKHUSM dan seterusnya gagal mencapai Penunjuk Prestasi Utama jabatan yang ditetapkan oleh hospital. Oleh itu, kajian ini memberi tumpuan kepada menentukan pengagihan sumber yang terbaik dalam memperuntukkan jumlah doktor dan jururawat yang bekerja mengikut syif untuk kelompok hari biasa dan kelompok hari cuti hujung minggu dan hari kelepasan am. Kaedah hibrid Simulasi Peristiwa Diskret dengan model BCC-berorentasikan input dan model Kecekapan Super yang terdapat dalam kaedah Analisis Penyampulan Data telah digunakan bagi mendapatkan alternatif pengagihan sumber yang terbaik bagi kedua-dua kelompok syif tersebut. Sejumlah 64 alternatif kombinasi untuk doktor dan jururawat untuk setiap syif telah dicadangkan bagi kelompok hari bekerja, dan 729 alternatif bagi kelompok cuti hujung minggu dan kelepasan am. Keputusan menunjukkan jumlah doktor dan jururawat yang sepatutnya bertugas bagi kelompok hari bekerja adalah seramai tiga orang doktor dan tiga orang jururawat untuk setiap syif, manakala untuk kelompok cuti hujung minggu dan kelepasan am pula, gabungan empat orang doktor dan empat orang jururawat bertugas bagi setiap syif adalah terbaik. Gabungan yang dicadangkan telah mengurangkan purata masa menunggu pesakit, mengoptimumkan penggunaan sumber dan berjaya meningkatkan bilangan pesakit yang dirawat pada hari biasa serta pada hari cuti hujung minggu dan kelepasan am.

 

Kata kunci: Analisis penyampulan data; model BCC; model kecekapan super; skor kecekapan; simulasi; simulasi peristiwa diskret

REFERENCES

Al-Refaie, A., Fouad, R.H. & Mohammad, S. 2014. Applying simulation and DEA to improve performance of emergency department in a Jordanian Hospital. Journal of Simulation Modelling and Theory 41: 58-72.

Al-Shayea, A.M. 2011. Measuring hospital’s unit’s efficiency: A data envelopment analysis approach. International Journal of Engineering & Technology IJET-IJENS 11(6): 44-53.

Banker, R., Charnes, A. & Cooper, W. 1984. Some models for estimating technical and scale efficiencies in data envelopment analysis. Management Science 30(9): 1078- 1092.

Blasak, E.R., Starks, W.D., Armel, S.W. & Hayduk, C. 2003. The use of simulation to evaluate hospital operations between the emergency department and a medical telemetry unit. Proceeding of 2003 Winter Simulation Conference. pp. 1887-1893.

Brailsford, S.C., Desai, S.M. & Viana, J. 2010. Towards the holygrail: Combining system dynamics and discrete-event simulation in healthcare. Proceeding of 2010 Winter Simulation Conference. pp. 2293-2303.

Chahal, K. & Eldabi, T. 2008. Applicability of hybrid simulation to different models of governance in UK healthcare. Proceeding of 2008 Winter Simulation Conference. pp. 1469-1477.

Chahal, K. & Eldabi, T. 2010. A generic framework for hybrid simulation in healthcare. Proceeding of the 28th International Conference of the System Dynamics Society. pp. 526-541.

Chun, Y.L. & Okudan, G.E. 2009. An exploration on the use of data envelopment analysis for product line selection. Industrial Engineering and Management Systems 8(1): 47-53.

Cooper, W.W., Lawrence, M.S. & Kaoru, T. 2007. Data Envelopment Analysis. 2nd ed. New York: Springer.

Eduardo, C., Manel, T., Francisco, E. & Ma, L.I. 2012. ABMS optimization for emergency department. Proceedings of 2012 Winter Simulation Conference. pp. 1039-1042.

Ertay, T., Ruan, D. & Tuzkayu, U.R. 2006. Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Information Sciences 176: 237-262.

Gunal, M.M. & Pidd, M. 2010. Discrete event simulation for performance modelling in healthcare: A review of the literature. Journal of Simulation 4(1): 42-51.

Kelton, W.D., Sadowski, R.P. & Zupick, N.B. 2015. Simulation with Arena. 6th ed. Singapore: McGraw-Hill Education.

Komashie, A. & Mousavi, A. 2005. Modeling emergency departments using discrete event simulation techniques. Proceedings of 2005 Winter Simulation Conference. pp. 2681-2685.

Mohd, R.Z., Muthukkaruppan, Kassim, I. & Rashidi, A. 2016. Estimating the right allocation of doctors in emergency department. Proceedings of 2016 Management International Conference (KMICe). pp. 446-452.

Norazura, A., Noraida, A.G., Anton, A.K. & Razman, M.T. 2014. Managing resource capacity using hybrid simulation. International Conference on Quantitative Sciences and Its Applications. pp. 504-511.

Norazura, A., Noraida, A.G., Anton, A.K. & Razman, M.T. 2012. Evaluating emergency department resource capacity using simulation. Modern Applied Science 6(11): 9-19.

Ruzanita, M.R., Wan, R.I. & Izzaamirah, I. 2014. An integrated simulation and data envelopment analysis in improving SME food production system. World Journal of Modelling and Simulation 10(2): 136-147.

Seiford, L. & Zhu, J. 1999. Infeasibility of super-efficiency data envelopment analysis models. INFOR 37(2): 174-186.

Wan, M.W.M.A., Wan, R.I. & Husyairi, H. 2016. Estimating emergency department capacity using simulation and data envelopment analysis. Indian Journal of Science and Technology 9(28): 1-10.

Weng, S.J., Tsai, L.M., Wang, C.Y., Chang, C.Y. & Gotcher, D. 2011. Using simulation and data envelopment analysis in optimal healthcare efficiency allocations. Proceeding of 2011 Winter Simulation Conference. pp. 1295-1305.

 

*Corresponding author; email: lg@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

previous