Sains Malaysiana 47(5)(2018): 893–901
http://dx.doi.org/10.17576/jsm-2018-4705-04
Penentuan Kepekatan Radionuklid Tabii dan Indeks Bahaya Radiologi Akibat Penggunaan Condisoil® ke atas Penanaman Hibiscus cannabinus(Kenaf)
(Determination of Natural
Radionuclides Concentrations and Radiological Hazard Index due to
Application of Condisoil® on Hibiscus
cannabinus(Kenaf) Cultivation)
AZNAN FAZLI ISMAIL1,2*, KHAIRIAH ROSLI2, WAN MOHD RAZI IDRIS3 & SAHIBIN ABD. RAHIM3
1Pusat Penyelidikan Teknologi Nuklear, Fakulti Sains dan Teknologi, Universiti Kebangsaan, Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Program Sains Nuklear, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Pusat Pengajian Sains Sekitaran & Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 5 September
2017/Accepted: 27 November 2017
ABSTRAK
Kajian ini bertujuan menentukan kepekatan aktiviti radionuklid tabii (226Ra, 228Ra dan 40K) dalam tanah, air dan tumbuhan serta faktor pemindahan daripada tanah kepada tumbuhan dan indeks bahaya radiologi akibat penggunaan Condisoil®. Sebanyak 4 sampel tanah, 14 sampel air dan 4 sampel tumbuhan telah dianalisis menggunakan sistem spektometri sinar gama. Keputusan kajian mendapati julat kepekatan aktiviti 226Ra, 228Ra dan 40K dalam sampel tanah yang menggunakan Condsoil® masing-masing adalah 13.8 - 17.6,
15.7 - 21.0 dan 44.5 - 57.7 Bq kg-1. Julat kepekatan aktiviti 226Ra, 228Ra dan 40K dalam sampel tumbuhan pula masing-masing adalah 5.0 - 18.5,
0.1 - 1.5 dan 42.7 - 321.8 Bq kg-1. Bagi sampel air, julat kepekatan aktiviti bagi radionuklid 226Ra, 228Ra dan 40K masing - masing adalah 0.3 - 0.9,
0.3 - 3.9 dan 1.4 - 11.6 Bq L-1. Julat faktor pemindahan radionuklid 226Ra, 228Ra dan 40K daripada tanah ke tumbuhan masing-masing adalah 0.42 - 0.71, 0.01 - 0.08 dan 0.85 - 5.34. Penilaian bahaya radiologi mendapati indeks kesetaraan radium berada di bawah nilai had yang dicadangkan iaitu 370 Bq kg-1. Sehubungan dengan itu, kajian ini mendapati penggunaan Condisoil® sebagai bahan penambahbaikan tanah tidak menyebabkan pertambahan radionuklid tabii ke dalam alam sekitar serta tidak mendatangkan risiko bahaya radiologi kepada manusia.
Kata kunci: Bahaya radiologi; Condisoil®; radionuklid tabii; sisa industri
ABSTRACT
The objectives of
this study were to determine the natural radioactivity concentrations (226Ra, 228Ra
and 40K) in soil, water and plant due to the application of Condisoil®, soil-to-plant transfer factor and radiological
hazard index due to the application of Condisoil®. A
total of 4 soils, 14 waters and 4 plants samples have been analysed using gamma spectrometry system. The results showed that the activity
concentrations of 226Ra, 228Ra
and 40K in soils treated with Condisoil®
ranged from 13.8 - 17.6, 15.7 - 21.0 and 44.5 - 57.7 Bq kg-1, respectively. The activity concentrations of 226Ra, 228Ra
and 40K in plants ranged from 5.0 - 18.5, 0.1 - 1.5 and 42.7
- 321.8 Bq kg-1,
respectively. In addition to that, the activity concentrations of 226Ra, 228Ra
and 40K in water was in the ranged of 0.3 - 0.9, 0.3 - 3.9
and 1.4 - 11.6 Bq L-1,
respectively. The soil-to-plant transfer factor for 226Ra, 228Ra
and 40K were in the ranged of 0.42 - 0.71, 0.01 - 0.08 and
0.85 - 5.34, respectively. The radiological hazard assessment found that the
radium equivalent index was lower than the recommended limit of
370 Bq kg-1. Therefore, this
study concludes that the application of Condisoil® as
soil amelioration does not contribute to the accumulation of natural
radionuclide in the environment as well as does not pose a significant
radiological risk to human.
Keywords: Condisoil®; industrial
residue; natural radionuclides; radiological hazard
REFERENCES
Ali, A.A., Heiyam, N.H. & Zahrah, B.M. 2016. Natural radioactivity levels in some vegetables and fruits commonly
used in Najaf Governorate, Iraq. Journal of Bioenergy and Food Science 3: 113-123.
Al-Areqi, W.M., Majid, A.A. & Sarmani, S. 2014. Thorium, uranium and rare earth elements
content in lanthanide concentrate (LC) andwater leach
purification (WLP) residue of Lynas advanced
materials plant (LAMP). AIP Conference Proceedings 1584,
American Institute of Physics, Melville, NY. pp. 93-96.
Almayahi, B., Tajuddin, A. & Jaafar, M. 2014. Measurement of natural radionuclides in human teeth and animal
bones as markers of radiation exposure from soil in the Northern Malaysian
peninsula. Radiation Physics and Chemistry 97: 55-67.
Almayahi, B., Tajuddin, A. & Jaafar, M. 2012. Radiation hazard indices of soil and water samples in Northern
Malaysian Peninsula. Applied Radiation and Isotopes 70: 2652- 2660.
Alsaffar, M.S., Jaafar, M.S., Kabir, N.A. & Ahmad, N. 2015. Distribution of 226Ra, 232Th
and 40K in rice plant components and physico-chemical
effects of soil on their transportation to grains. Radiation Research and
Applied Sciences 8: 300-310.
Alnassar, N.A., Jaafar, M.S. & Kabir, N.A. 2017. Determination of concentraions of natural radionuclife in soil dan water in non-cultivated sites in Seberang Perai, Malaysia. IOSR-JAP 9(2): 27-35.
Alzubaidi, G., Fauziah, B.S.H. & Rahman, I.A.
2016. Assessment of natural radioactivity levels and
radiation hazards in agricultural and virgin soil in the State of Kedah, North
of Malaysia. The Scientific World Journal 2016: Article ID
6178103.
Aswood, M.S., Jaafar, M.S. & Sabar, B. 2013. Assessment of radionuclide transfer from soil to vegetables in farms
from Cameron Highlands and Penang, (Malaysia) using neutron activation
analysis. Applied Physics Research 5(5): 85-92.
Asaduzzaman, K., Khandaker, M.U., Amin, Y.M. & Mahat, R. 2015. Uptake and distribution of natural radioactivity in rice from soil in north and
west part of Peninsular Malaysia for estimation of ingestion dose to man. Annals
of Nuclear Energy 76: 85-93.
Asaduzzaman, K., Mannan,
F., Khandaker, M.U., Farook,
M.S., Elkezza, A., Amin, Y.M. & Sharma, S. 2015.
Natural radioactivity levels in commercialized bottled drinking water and their
radiological quality assessment. Desalination and Water Treatment 57:
11999-12009.
Aznan, F.I., Amran,
A.M., Yasir, M.S., Redzuwan,
Y. & Bahari, I. 2009. Hazard radiologi radionuklid tabii dalam simen Portland Semenanjung Malaysia. Sains Malaysiana38(3):
407-411.
Aznan, F.I., Amran, A.M., Yasir, M.S., Redzuwan, Y. & Bahari, I.
2010. Penilaian risiko radiologi bahan binaan konkrit di Semenanjung Malaysia. Sains Malaysiana39(4):
607-613.
Beretka, J.
& Matthew, P.J. 1985. Natural radioactivity of
Australian building materials, industrial waste and by products. Health
Physics 48: 87-95.
Carini, F.
& Bengtsson, G. 2001. Post-deposition
transport of radionuclides in fruit. Journal of Environmental
Radioactivity 55(2-3): 215-236.
Gaffar,
S., Ferdous, M.J., Begum, A. & Ullah, S.M. 2014. Transfer of natural
radionuclides from soil to plants in North Western Parts of Dhaka. Malaysian
Journal of Soil Science 18: 61-64.
Greger, M. 2004. Technical
report TR-04-14: Uptake of nuclides by plants. SKB, Sweedish Nuclear Fuel and Waste Management.
Hamzah,
Z., Siti, A.A.R. & Saat,
A. 2011. Measurement of 226Ra, 228Ra and 40K in soil in district of kuala krai using gamma
spectrometry. Malaysian Journal of Analytical Sciences 15(2):
159-166.
IAEA. 2013. Safety report
Series No. 78. Radiation Protection and Management of NORM
Residues in the Phosphate Industry. Vienna: IAEA.
IAEA. 2010. Technical
Report No. 472. Handbook of Parameter Values for the
Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environment. Vienna: IAEA.
IAEA. 1989. Technical
Report No. 295. Measurement of Radionuclides in Food and
the Environment. Vienna: IAEA.
Ismail,
N.F. & Ibrahim, N. 2016. Natural radioactivity in
groundwater and soils in Johor, Malaysia ARPN. Journal of
Engineering and Applied Sciences 11(18): 10935-11039.
La Torre, F.P. & Silari, M. 2015. Leaching of radionuclide from activated
soil into groundwater. Environmental Radioactivity 143: 7-13.
Majid,
A.A., Aznan, F.I., Yasir,
M.S., Redzuwan, Y. & Bahari,
I. 2013. Radiological dose assessment of naturally occurring
radioactive materials in concrete building materials. Radionalaytical Nuclear Chemistry 297: 277- 284.
Markkanen, M. 2001. Challenges in harmonising controls on the
radioactivity of building materials within the European Union. The
Science of the Total Environ 272: 3-7.
Masitah,
A., Zaini, H. & Saat,
A. 2005. Determination of 226Ra, 228Ra and 40K in soil from jengka-15
oil palm plantation. Journal of Analytical Sciences 9(1):
126-132.
Masitah, A., Zaini, H., Ahmad, S., Muhamat,
O., W. Mohamad, W.A.K. & M. Rafi, M.S. 2004. Level of
naturally occurring radioactive material, k-40 in oil palm’s cultivated soil. Journal of Nuclear and Related Technologies 1(2): 1-11.
Michael,
A.O., Onosohwo, B.U., Mayeen,
U.K., Amin, Y.M. & Faruq, G. 2014. Radiological study on newly
developed composite corn advance lines in Malaysia. Physica Scripta89: 125002.
NEA-OECD. 1979. Exposure to
Radiation from Natural Radioactivity in Building Materials. Report by NAE
Group Expert, OECD: Paris.
Priharti, W. & Supian, S. 2016. Radiological risk
assessment from the intake of vegetables and fruits in Malaysia. Malaysian
Journal of Analytical Sciences 20(6): 1247-1253.
Pulhani,
V.A., Dafauti, S. & Hegde,
A.G. 2007. Leaching of uranium, radium and thorium from vertisol by ground water. Radionalaytical Nuclear Chemistry 274: 341-343.
Raffaella,
T., Ricardo, L. & Mario, D.S. 2015. Radionuclide
transport in shallow groundwater. Progress in Nuclear Energy 85:
277-290.
RIA. 2011. Radiological
Impact Assessmant of Lynas Advanced Materials Plant 2011: Executive Summary, Rev. 4, November (2011).
Saeed,
M.A., Siti, S.Y., Hossain, I., Ahmed, R., Hewa, Y.A., Shahid, M. & Ramli, A.T. 2011. Soil to rice
transfer factor of the natural radionuclides in Malaysia. Romanian
Journal of Physics 57: 1414-1424.
SA-EPA. 2005. EPA
Guidelines: Composite Soil Sampling in Site Contamination Assessment and
Management. Government of South Australia.
Shyamal, R.C., Rezaul, A., Rezaur, R.A.K.M.
& Rashmi, S. 2013. Radioactivity concentrations in soil
and transfer factors of radionuclides from soil to grass and plants in the
Chittagong City of Bangladesh. Journal of Physical Science 24(1):
95-113.
Solehah,
A.R., Yasir, M.S. & Samat,
S.B. 2016. Activity concentration, transfer factors and resultant radiological risk of
226Ra, 232Th, and 40K in soil and some vegetables consumed in Selangor,
Malaysia. AIP Conference Proceedings 1784: 040016.
Tawalbeh,
A.A., Samat, S.B. & Yasir,
M.S. 2013. Radionuclides level and its radiation hazard index in some drinks consumed in
the central zone of Malaysia. Sains Malaysiana42(3): 319-323.
UNSCEAR. 2000. Exposures
from Natural Radiation Sources. United Nations Scientific
Committee on the Effects of Atomic Radiation. Report to General
Assembly, With Annexes. United Nations, New York.
UNSCEAR. 1982. Ionizing
Radiation: Sources and Biological Effects. United Nations
Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly, with annexes. New York:
United Nations.
US-EPA,
2002. EPA QA/G-5S: Guidance on Choosing a Sampling Design for Environmental Data
Collection. U.S. Environmental Protection Agency,
Washington D.C.
*Corresponding
author; email: aznan@ukm.edu.my
|