Sains Malaysiana 47(5)(2018): 903–908

http://dx.doi.org/10.17576/jsm-2018-4705-05

 

Isolation and Photophysical Properties of Di- and Tri-substituted Natural Anthraquinones from Malaysian Morinda citrifolia

(Pengasingan dan Sifat Fotofizikal Antraquinon Semula Jadi Tertukarganti-Di dan Tri daripada Morinda citrifoliadi Malaysia)

 

NABILA ELYANA ADNAN, NUR ATIQAH MOHD NASUHA, ZANARIAH ABDULLAH, YEUN-MUN CHOO* & HAIRUL ANUAR TAJUDDIN

 

Chemistry Department, University of Malaya, Jalan Universiti, 50603 Wilayah Persekutuan, Kuala Lumpur, Malaysia

 

Received: 21 August 2017/Accepted: 5 December 2017

 

 

ABSTRACT

Five di- and tri-substituted natural anthraquinones, i.e. nordamnacanthal (1), damnacanthal (2), rubiadin (3), 1-methoxy-2-methyl-3-hydroxyanthraquinone (4) and 1-hydroxy-3-methoxyanthraquinone (5) were subjected to photophysical studies. The results indicated that steric hindrance and intramolecular hydrogen bonding are important factors that affect absorption and emission spectral of these natural anthraquinones. Besides that, emission properties were significantly enhanced with formation of intramolecular hydrogen bonding in 1,3-dihydroxy-2-aldehyde tri-substituted anthraquinone 1. This gave rise to formation of two additional quasi aromatic rings extending the π-conjugation system in the anthraquinone structure.

 

Keywords: Absorption spectral; anthraquinone; emission spectral; intramolecular hydrogen bonding; photophysical properties

 

ABSTRAK

Lima antraquinon semula jadi, iaitu nordamnacanthal (1), damnacanthal (2), rubiadin (3), 1-metoksi-2-metil-3-hidroksiantraquinon (4) dan 1-hidroksi-3-metoksiantraquinon (5) digunakan dalam kajian sifat fotofizikal. Keputusan kajian menunjukkan bahawa penghalang sterik dan ikatan hidrogen intramolekul adalah faktor penting yang mempengaruhi spektrum penyerapan dan pelepasan antraquinon semula jadi. Selain itu, sifat fotofizikal pemancaran antraquinon 1 tertukarganti-tri 1,3-dihidroksi-2-aldehid dipertingkatkan dengan pembentukan ikatan hidrogen intramolekul. Pembentukan ikatan hidrogen intramolekul ini membolehkan pembentukan dua gelang aromatik kuasi tambahan dan memanjangkan sistem konjugasidalam struktur antraquinon.

 

Kata kunci: Antraquinon; ikatan hidrogen intramolekul; sifat fotofizikal; spektra pelepasan spektra penyerapan

REFERENCES

Akhtar, M.N., Zareen, S., Yeap, S.K., Ho, W.Y., Lo, K.M., Hasan, A. & Alitheen, N.B. 2013. Total synthesis, cytotoxic effects of Damnacanthal, Nordamnacanthal and related anthraquinone analogues. Molecules 18: 10042-10055.

Allen, N.S., Pullen, G., Shah, M., Edge, M., Holdsworth, D., Weddell, I. & Catalina, F. 1995. Photochemistry and photoinitiator properties of 2-substituted anthraquinones 1. Absorption and luminescence characteristics. J. Photochem. Photobio. A: Chem. 91: 73-79.

Anouar, E.L., Osman, C.P., Weber, J.F.F. & Ismail, N.H. 2014. UV/Visible spectra of a series of natural and synthesised anthraquinones: Experimental and quantum chemical approaches. SpringerPlus 3: 233.

Diaz A.N. 1991. Analytical applications of 1,10-anthraquinones: A review. Talanta 38: 571-588.

Diaz, A.N. 1990. Absorption and emission spectroscopy and photochemistry of 1,10- anthraquinone derivatives: a review. J. Photochem. Photobio. A: Chem. 53: 141-167.

Flom, S.R. & Barbara, P.F. 1985. Proton transfer and hydrogen bonding in the internal conversion of S1 anthraquinones. J. Phys. Chem. 89: 4489-4494.

Gordon, P.F. & Gregory, P. 1983. Organic Chemistry in Colour. Heidelberg: Springer Verlag.

Kamiya, K., Hamabe, W., Tokuyama, S., Hirano, K., Satake, T., Kumamoto-Yonezawa, Y., Yoshida, Y. & Mizushina, Y. 2010. Inhibitory effect of anthraquinones isolated from the Noni (Morinda citrifolia) root on animal A-, B- and Y-families of DNA polymerases and human cancer cell proliferation. Food Chemistry 188: 725-730.

Lakowicz, J.R. 2006. Principles of Fluorescence Spectroscopy. Baltimore: Springer.

Langdon-Jones, E.E. & Pope, S.J.A. 2014. The coordination chemistry of substituted anthraquinones: Developments and applications. Coordination Chem. Rev. 269: 32-53.

Loonjang, K., Duangjinda, D., Phongpaichit, S., Sawangjaroen, N., Rattanaburi, S. & Mahabusarakam, W. 2015. A new anthraquinone from Morinda ellipticaRidl. Nat. Prod. Res. 29: 1833-1838.

Madje, B.R., Shelke, K.F., Sapkal, S.B., Kakade, G.K. & Shingare, M.S. 2010. An efficient onepot synthesis of anthraquinone derivatives catalyzed by alum in aqueous media. Green Chem. Lett. Rev. 3: 269-273.

Nur Atiqah, M.N. & Choo, Y.M. 2016. A new flavone from Malaysia Borneo Marsdenia tinctoria. Nat. Prod. Res. 30(13): 1532-1536.

Peters, R.H. & Sumner, H.H. 1953. Spectra of anthraquinone derivatives. J. Chem. Soc. 0: 2101-2110.

Puenner, F., Schieven, J. & Hilt, G. 2013. Synthesis of fluorenone and anthraquinone derivatives from aryl- and aroyl-substituted propiolates. Org. Lett. 18: 4888-4891.

Seidel, N., Hahn, T., Liebing, S., Seichter, W., Kortus, J. & Weber, E. 2013. Synthesis and properties of new 9, 10-anthraquinone derived compounds for molecular electronics. New J. Chem. 37: 601-610.

Weisło, A., Niedziałkowski, P., Wnuk, E., Zarzeczan´ska, D. & Ossowski, T. 2013. Influence of different amino substituents in position 1 and 4 on spectroscopic and acid base properties of 9, 10-anthraquinone moiety. Spectrochim. Acta Mol. Biomol. Spectrosc.108: 82-88.

Weisstuch, J. & Testa, A.C. 1970. Fluorescence study of 2-(N,N-Dimethylamino)pyridine and related molecules. J. Phys. Chem. 74: 2299-2302.

Wu, T.S., Lin, D.M., Shi, L.S., Damu, A.G., Kuo, P.C. & Kuo, Y.H. 2003. Cytotoxic anthraquinones from the stems of Rubia wallichiana DECNE. Chem. Pharm. Bull. 51: 948-950.

Xu, R., Ye, Y. & Zhao, W. 2010. Introduction to Natural Products Chemistry. Boca Raton: CRC Press.

Yap, A.C., Chan, K.G., Sim, K.S. & Choo, Y.M. 2016. A new oxolane from Enterobacter cloacae. Nat. Prod. Res. 30: 783-788.

Yap, A.C., Teoh, W.Y., Chan, K.G., Sim, K.S. & Choo Y.M. 2015. A new oxathiolane from Enterobacter cloacae. Nat. Prod. Res. 29: 722-726.

 

 

*Corresponding author; email: ymchoo@um.edu.my

 

 

 

previous