Sains Malaysiana 47(5)(2018): 923–929
http://dx.doi.org/10.17576/jsm-2018-4705-07
Experimental and DFT
Investigation on the Influence of Electron Donour/Acceptor on
the Hydrogen Bonding Interactions of 1-(1,3-Benzothiazol-2-yl)-3-(R-benzoylthiourea)
(Uji
Kaji dan
Penyiasatan DFT mengenai Pengaruh Penderma/Penerima Elektron pada Interaksi
Ikatan Hidrogen
dalam 1- (1,3-Benzotiazol-2-yl)
-3- (R-benzoylthiourea))
MUHD HAFIZI
B. ZAINAL1, WUN FUI MARK-LEE1, SYAHIDAH MOHD TAHIR1, ISHAK
B. AHMAD1 & MOHAMMAD
B. KASSIM1,2*
1School
of Chemical and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Fuel
Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:
20 September 2017/Accepted: 29 December 2017
ABSTRACT
The presence of two
different chromophores in benzothiazole
molecule namely benzothiazole and
aromatic rings lead to interesting chemical and biological properties
that attract more researches on the compounds. Three new benzothiazolyl-benzoythiourea
compounds namely 1-(1,3-benzothiazol-2-yl)-3-(benzoylthiourea)
(BBT),
1-(1,3-benzothiazol-2-yl)-3-(4-chlorobenzoylthiourea) (BBT-4Cl)
and 1-(1,3-benzothiazol-2-yl)-3-(4-methoxybenzoylthiourea) (BBT-4OCH3)
with different electron withdrawing substituents (R) at the para
positions on the benzene ring of benzoylthiourea
ring have been synthesized from the reaction of R-benzoyl isothiocyanate
(R= H, Cl, and OCH3) and 2-aminobenzothiazole. The
compounds were characterized by spectroscopic techniques (infrared,
1H
proton NMR and UV-Vis). The IR spectra
showed the frequency signals of n (C=O), n (C=S),
n (N-H) at 1664-1673, 1238-1249 and 3031-3055 cm-1,
respectively. The 1H proton NMR spectra
showed the presence of N-H amine and amide signals in the region
of (12.14-12.35) and (14.17-14.43) ppm, respectively. The proton
signals of the two benzothiazole and
benzoylthiourea moieties appear at
7.08-8.16 ppm. A theoretical study based on Density Functional
Theory (DFT) and Time-Dependent (TD)
DFT
was conducted to optimize the geometrical structure
and investigate the electronic properties of title compounds.
The highest occupied molecular orbital (HOMO) was found on the benzothiazole moiety; while, the lowest-unoccupied molecular
orbital (LUMO) was located at the benzoylthiourea fragment. The DFT optimized
structures possessed an intramolecular
hydrogen bonding and the types of para substituents used influenced
the properties of hydrogen bonding.
Keywords: Benzothiazolyl-benzoylthiourea; DFT;
electron donating groups; electron withdrawing groups; hydrogen bonding
interactions
ABSTRAK
Kehadiran dua kromofor
yang berbeza di dalam
molekul benzotiazol iaitu benzotiazol dan gelang aromatik
menyebabkan molekul
ini mempunyai ciri
kimia dan
biologi yang menarik minat para penyelidik terhadap sebatian tersebut. Tiga sebatian benzotiazolil-benzoiltiourea
yang baru dengan
kumpulan pengganti daripada kumpulan penderma dan kumpulan
penerima elektron
(R) pada kedudukan para pada gelang benzoiltiourea
iaitu 1-(1,3-benzotiazol-2-il)-3-(benzoiltiourea)
(BBT),
1-(1,3-benzotiazol-2-il)-3-(4-klorobenzoiltiourea) (BBT-4Cl)
dan 1-(1,3-benzotiazol-2-il)-3-(4-metoksibenzoiltiourea)
(BBT-4OCH3)
berjaya disintesis
daripada tindak balas R- benzoil isotiosianat (R = H, Cl dan
OCH3)
dan 2-aminobenzotiazol. Sebatian tersebut
telah diciri
dengan teknik spektroskopi
(inframerah, 1H proton RMN dan
UV-Vis).
Spektra inframerah
sebatian menunjukkan frekuensi bagi jalurn (C=O), n (C=S),
n (N-H) masing-masing pada
1664-1673, 1238-1249 dan 3031-3055
cm-1.
Spektra 1H
proton NMR menunjukkan kehadiran proton pada moieti N-H amina dan amida masing-masing
pada 12.14-12.35 and 14.17-14.43 ppm.
Kehadiran
dua moieti benzotiazol
dan benzoiltiourea
ditunjukkan oleh isyarat proton pada julat 7.08-8.16 ppm. Kajian teori
berdasarkan pengiraan
dengan kaedah teori
fungsi ketumpatan
(DFT)
dan DFT bersandar
masa (TD) telah dijalankan
untuk mengoptimumkan
struktur geometri dan mengkaji sifat
elektronik sebatian
tersebut. orbital molekul terisi dengan tenaga tertinggi
(HOMO)
didapati pada
moieti benzotiazol; manakala orbital molekul tidak terisi dengan
tenaga terendah
(LUMO)
didapati pada
moieti benzoiltiourea. Ikatan intramolekul hidrogen dapat dioptimumkan melalui DFT dan
jenis kumpulan
pengganti yang digunakan mempengaruhi sifat ikatan hidrogen tersebut.
Kata kunci: Benzotiazolil-benzoiltiourea; DFT; ikatan hidrogen; kumpulan penarik elektron; kumpulan penderma electron
REFERENCES
Alkherraz, A.M., Lusta,
Z.I. & Zubi, A.E. 2014. Synthesis
and use of thiourea derivative
(1-phenyl-3-benzoyl-2-thiourea) for extraction of cadmium ion. International
Journal of Chemical, Nuclear, Materials and Metallurgical Engineering 8(2):
116-118.
Al-abbasi, A.A. & Kassim, M.B. 2011. 1-Benzoyl-3-ethyl-3- phenylthiourea Acta Crystallographica Section E: Structure Reports Online 67(3):
611.
Arslan, H., Kulcu, N. & Florke, U. 2006. Normal
coordinate analysis and crystal structure of N, N-dimethyl-N'-(2-
chlorobenzoyl)thiourea.
Spectrochimica Acta
Part A 64: 1065-1071.
Becke, A.D. 1993. Density functional thermochemistry III the role of exact exchange. J. Chem. Phys. 98: 5648-5652.
Becke, A.D. 1988. Density-functional exchange-energy approximation with correct
asymptotic behaviour. Physical Review A38(6): 3098-3100.
Cossi, M., Rega, N., Scalmani,
G. & Barone, V. 2003. Molecules
in solution with the C-PCM solvation model. Journal of Computational
Chemistry 24(6): 669-681.
Đaković, M., Čičak, H., Soldin, Ž. & Tralić-Kulenović,
V. 2009. Structural and computational studies of
geometric isomers of 2-(4-methoxystyryl)-1,3-benzothiazole
and preparation of their complexes with zinc halides. Journal of Molecular
Structure 938: 125-132.
Das, D.K. 1984. N-a-(5-bromopyridyl)-N'-benzoyl
thiourea (BrPBT) as a new chelating
agent for the spectrophotometric determination of rhodium (III).
Fres. J. Anal. Chem. 318(8): 612.
Davidson, E.R. & Feller, D. 1986. Basis set selection for molecular calculations. Chemical
Reviews 86(4): 681-696.
Domìnguez, M., Anticó, E., Beyer, L., Aguirre,
A., García-Granda, S. &
Salvadó, V. 2002. Liquid-liquid extraction of palladium
(III) and gold (III) with N-benzoyl-N',N'-diethylthiourea and the synthesis of a palladium benzoylthiourea complex. Polyhedron 21: 1429-1437.
Fui, M.L.W., Hang, N.K., Arifin, K., Minggu, L.J. & Kassim, M.B. 2016. Photocatalytic
degradation of bromothymol blue with Ruthenium(II) bipyridyl complex in aqueous basic solution. AIP
Conference Proceedings 1784(II): 1-6.
Fui, M.L.W., Hang, N.K., Minggu, L.J., Umar, A.A. & Kassim, M.B. 2012. Penentuan aras jalur tenaga kompleks tungsten nitrosilditiolena. Sains Malaysiana41(4): 439-444.
Gao, E.J., Wang, K.H., Gu, X.F., Yu, Y.,
Sun, Y.G., Zhang, W.Z., Yin, H.X., Wu, Q., Zhu, M.C. & Yan, X.M. 2007. A
novel binuclear palladium complex with benzothiazole-2-thiolate: Synthesis,
crystal structure, and interaction with DNA. Journal of Inorganic
Biochemistry 101: 1404-1409.
Hehre, W.J., Radom, L., Schleyer, P.V.R.
& Pople, J.A. 1986. Ab initio molecular orbital theory. Accounts of Chemical Research 9: 399-406.
Katritzky, A.R. & Gordeev, M.F. 1991. New 1 H-benzotriazole-mediated synthesis
of N, N'-disubstituted thioureas
and carboimides. J.
Chem. Soc. 1: 2199-2203.
Kurt, G., Sevgi, F. & Mercimek, B. 2009. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands. Chemical Papers 63(5):
548-553.
Lee, C., Yang, W. & Parr, R. 1988. Development of the colle-salvetti correlation energy formula into a functional of the electron density. Phys.
Rev. B 37(2): 785-789.
Li, G., Hu, K., Yi, C., Knappenberger Jr., K.L., Meyer, G.J., Gorelsky, S.I. & Shatruk, M. 2013. Panchromatic light harvesting and hot electron injection by Ru(II) dipyrrinates on a TiO2 surface. J. Phys. Chem. 117(34): 17399-17411.
Mark-Lee, W.F., Ng, K.H., Minggu, L.J.,
Umar, A.A. & Kassim, M.B. 2013. A molybdenum dithiolene complex as a potential photosensitizer for photoelectrochemical cells. International Journal of Hydrogen Energy 38(22):
9578-9584.
Mark-Lee, W.F., Rusydi, F., Minggu, L.J. & Kassim, M.B.
2017. Bis(Bipyridyl)-Ru(II)-1-benzoyl-3-(pyridine-2-yl)-
1H-pyrazole as potential photosensitiser:
Experimental and density functional theory study. Jurnal Teknologi79(5-3): 117-123.
Miertuš, S., Scrocco, E. & Tomasi, J. 1981. Electrostatic interaction of a solute with a continuum. A direct utilization of Ab initio molecular potentials for
the provision of solvent effects. Chemical Physics 55(1):
117-129.
Mishra, A., Fischer, M.K.R. & Bauerle,
P. 2009. Metal-free organic dyes for dye-sensitized solar cells: From
structure: Property relationships to design rules. Angewandte Chemie International Edition 49(14): 2474-2499.
Mohammad Halim, N.I., Kassim, K., Fadzli, A.H. & Yamin, B.M.
2012. Synthesis, characterization and antibacterial studies of Cu(II) complexes thiourea. The
Malaysian Journal of Analytical Sciences 16(1): 56-61.
Perez,
H., Correa, R.S., Plutin, A.M. &
Mascarenhas, A.Y. 2011.
N-Benzoyl-N',N'-dimethylthiourea.
Acta Crystallography, Sect.
E 67: o647.
Raj,
S.S.S., Puviarasan, K., Velmurugan,
D., Jayanthi, G. & Fun, H.K. 1999. N H
S hydrogen bonding in N-benzoyl-N'-methyl- N-phenylthiourea and
N-benzoyl-N'-(3,4-dimethylphenyl) thiourea.
Acta Crystallography C55: 1318-1320.
Saeed,
S., Rashid, N., Jones, P.G., Ali, R. & Hussain, M. 2010. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. European
Journal of Medicinal Chemistry 45: 1323-1331.
Sathdeo,
S., Schoultz, X., Gerber, T.I.A., Betz, R. & Hosten, E.C. 2016. Reactivity of a benzothiazole-thiourea derivative with the oxorhenium (V) core: Isolation of rhenium (III) and (V)
complexes. Polyhedron. 112: 1-5.
Sayama, K., Tsukagoshi, S., Hara, K., Ohga,
Y., Shinpou, A., Abe, Y., Suga,
S. & Arakawa, H. 2002. Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. The Journal of Physical Chemistry B 106(6): 1363-1371.
Schoultz,
X., Gerber, T.I.A. & Hosten, E.C. 2016. Rhenium (I) complexes with benzothiazole-thiourea derivatives. Polyhedron 113: 55-60.
Selvarakumaran,
N., Pratheepkumar, A., Ng, S.W., Tiekink,
E.R.T. & Karvembu, R. 2011. Versatile
coordination behaviour of N, N-di(alkyl/aryl)-N'-benzoylthiourea
ligands: Synthesis, crystal structure and cytotoxicity of palladium
(II) complexes. Inorganica
Chimica Acta376:
278-284.
Shome,
S.C., Mazumdar, M. & Haldar,
P.K. 1980. N-Alpha- Pyridyl-N'-Benzoyl
thiourea as a chelating agent for
the determination of iridium. J. Chem. 57(2): 139-141.
Tan,
S.S., Al-abbasi, A.A., Tahir, M.I.M. & Kassim, M.B. 2014. Synthesis,
structure and spectroscopic properties of cobalt(III)
complexes with 1-(benzoyl-(3,3-disubstituted) thiourea. Polyhedron 68: 287-294.
Thompson,
L.K., Ball, R.G. & Trotter, J. 1980. Complexes of substituted benzothiazoles.
2. Copper (II) complexes of the 'tripod' ligand tris(2-benzothiazoylmethyl)amine.
Can. J. Chem. 58: 1566.
Weiqun,
Z., Kuisheng, L., Yong, Z. & Lu,
L. 2003. Structural
and spectral studies of N-(4-chloro)benzoyl-N'-2-tolylthiourea.
Journal of Molecular Structure 657: 215-223.
Yang,
W., Liu, H., Li, M., Wang, F., Zhou, W. & Fan, J. 2012. Synthesis, structures and antibacterial activities of benzoylthiourea derivatives and their complexes with
cobalt. Journal of Inorganic Biochemistry 116: 97-105.
Yusof,
M.S., Jusoh, R.H., Khairul,
W.M. & Yamin, B.M. 2010. Synthesis
and characterization a series of N-(3,4-
dichlorophenyl)-N'-(2,3 and 4-methylbenzoyl)thiourea derivatives. Journal of Molecular Structure
975: 280-284.
Yutronic, N., Manriquez, V., Jara, P., Witke, O., Merchan, J. &
Gonzalez, G. 2000. Bis(thiourea)-1,4-diazabicyclo[2.2.2]
octane. A new layered thiourea inclusion compound. Journal of the Chemical Society, Perkin
Transactions 2 8: 1757.
Zhou,
W.Q., Li, B.L., Cao, Y., Zhang, Y., Lu, L.D. & Yang, X.J.
2005. The structure and conformation analysis of N-2- fluorobenzoyl-N'-2-methoxy
phenyl thiourea. Journal
of Molecular Structure: Theochem730:
131-139.
*Corresponding author; email: mb_kassim@ukm.edu.my