Sains Malaysiana 47(5)(2018): 923–929

http://dx.doi.org/10.17576/jsm-2018-4705-07

 

Experimental and DFT Investigation on the Influence of Electron Donour/Acceptor on the Hydrogen Bonding Interactions of 1-(1,3-Benzothiazol-2-yl)-3-(R-benzoylthiourea)

(Uji Kaji dan Penyiasatan DFT mengenai Pengaruh Penderma/Penerima Elektron pada Interaksi Ikatan Hidrogen dalam 1- (1,3-Benzotiazol-2-yl) -3- (R-benzoylthiourea))

 

MUHD HAFIZI B. ZAINAL1, WUN FUI MARK-LEE1, SYAHIDAH MOHD TAHIR1, ISHAK B. AHMAD1 & MOHAMMAD B. KASSIM1,2*

 

1School of Chemical and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 20 September 2017/Accepted: 29 December 2017

 

ABSTRACT

The presence of two different chromophores in benzothiazole molecule namely benzothiazole and aromatic rings lead to interesting chemical and biological properties that attract more researches on the compounds. Three new benzothiazolyl-benzoythiourea compounds namely 1-(1,3-benzothiazol-2-yl)-3-(benzoylthiourea) (BBT), 1-(1,3-benzothiazol-2-yl)-3-(4-chlorobenzoylthiourea) (BBT-4Cl) and 1-(1,3-benzothiazol-2-yl)-3-(4-methoxybenzoylthiourea) (BBT-4OCH3) with different electron withdrawing substituents (R) at the para positions on the benzene ring of benzoylthiourea ring have been synthesized from the reaction of R-benzoyl isothiocyanate (R= H, Cl, and OCH3) and 2-aminobenzothiazole. The compounds were characterized by spectroscopic techniques (infrared, 1H proton NMR and UV-Vis). The IR spectra showed the frequency signals of n (C=O), n (C=S), n (N-H) at 1664-1673, 1238-1249 and 3031-3055 cm-1, respectively. The 1H proton NMR spectra showed the presence of N-H amine and amide signals in the region of (12.14-12.35) and (14.17-14.43) ppm, respectively. The proton signals of the two benzothiazole and benzoylthiourea moieties appear at 7.08-8.16 ppm. A theoretical study based on Density Functional Theory (DFT) and Time-Dependent (TD) DFT was conducted to optimize the geometrical structure and investigate the electronic properties of title compounds. The highest occupied molecular orbital (HOMO) was found on the benzothiazole moiety; while, the lowest-unoccupied molecular orbital (LUMO) was located at the benzoylthiourea fragment. The DFT optimized structures possessed an intramolecular hydrogen bonding and the types of para substituents used influenced the properties of hydrogen bonding.

 

Keywords: Benzothiazolyl-benzoylthiourea; DFT; electron donating groups; electron withdrawing groups; hydrogen bonding interactions

 

ABSTRAK

Kehadiran dua kromofor yang berbeza di dalam molekul benzotiazol iaitu benzotiazol dan gelang aromatik menyebabkan molekul ini mempunyai ciri kimia dan biologi yang menarik minat para penyelidik terhadap sebatian tersebut. Tiga sebatian benzotiazolil-benzoiltiourea yang baru dengan kumpulan pengganti daripada kumpulan penderma dan kumpulan penerima elektron (R) pada kedudukan para pada gelang benzoiltiourea iaitu 1-(1,3-benzotiazol-2-il)-3-(benzoiltiourea) (BBT), 1-(1,3-benzotiazol-2-il)-3-(4-klorobenzoiltiourea) (BBT-4Cl) dan 1-(1,3-benzotiazol-2-il)-3-(4-metoksibenzoiltiourea) (BBT-4OCH3) berjaya disintesis daripada tindak balas R- benzoil isotiosianat (R = H, Cl dan OCH3) dan 2-aminobenzotiazol. Sebatian tersebut telah diciri dengan teknik spektroskopi (inframerah, 1H proton RMN dan UV-Vis). Spektra inframerah sebatian menunjukkan frekuensi bagi jalurn (C=O), n (C=S), n (N-H) masing-masing pada 1664-1673, 1238-1249 dan 3031-3055 cm-1. Spektra 1H proton NMR menunjukkan kehadiran proton pada moieti N-H amina dan amida masing-masing pada 12.14-12.35 and 14.17-14.43 ppm. Kehadiran dua moieti benzotiazol dan benzoiltiourea ditunjukkan oleh isyarat proton pada julat 7.08-8.16 ppm. Kajian teori berdasarkan pengiraan dengan kaedah teori fungsi ketumpatan (DFT) dan DFT bersandar masa (TD) telah dijalankan untuk mengoptimumkan struktur geometri dan mengkaji sifat elektronik sebatian tersebut. orbital molekul terisi dengan tenaga tertinggi (HOMO) didapati pada moieti benzotiazol; manakala orbital molekul tidak terisi dengan tenaga terendah (LUMO) didapati pada moieti benzoiltiourea. Ikatan intramolekul hidrogen dapat dioptimumkan melalui DFT dan jenis kumpulan pengganti yang digunakan mempengaruhi sifat ikatan hidrogen tersebut.

 

Kata kunci: Benzotiazolil-benzoiltiourea; DFT; ikatan hidrogen; kumpulan penarik elektron; kumpulan penderma electron

REFERENCES

Alkherraz, A.M., Lusta, Z.I. & Zubi, A.E. 2014. Synthesis and use of thiourea derivative (1-phenyl-3-benzoyl-2-thiourea) for extraction of cadmium ion. International Journal of Chemical, Nuclear, Materials and Metallurgical Engineering 8(2): 116-118.

Al-abbasi, A.A. & Kassim, M.B. 2011. 1-Benzoyl-3-ethyl-3- phenylthiourea Acta Crystallographica Section E: Structure Reports Online 67(3): 611.

Arslan, H., Kulcu, N. & Florke, U. 2006. Normal coordinate analysis and crystal structure of N, N-dimethyl-N'-(2- chlorobenzoyl)thiourea. Spectrochimica Acta Part A 64: 1065-1071.

Becke, A.D. 1993. Density functional thermochemistry III the role of exact exchange. J. Chem. Phys. 98: 5648-5652.

Becke, A.D. 1988. Density-functional exchange-energy approximation with correct asymptotic behaviour. Physical Review A38(6): 3098-3100.

Cossi, M., Rega, N., Scalmani, G. & Barone, V. 2003. Molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry 24(6): 669-681.

Đaković, M., Čičak, H., Soldin, Ž. & Tralić-Kulenović, V. 2009. Structural and computational studies of geometric isomers of 2-(4-methoxystyryl)-1,3-benzothiazole and preparation of their complexes with zinc halides. Journal of Molecular Structure 938: 125-132.

Das, D.K. 1984. N-a-(5-bromopyridyl)-N'-benzoyl thiourea (BrPBT) as a new chelating agent for the spectrophotometric determination of rhodium (III). Fres. J. Anal. Chem. 318(8): 612.

Davidson, E.R. & Feller, D. 1986. Basis set selection for molecular calculations. Chemical Reviews 86(4): 681-696.

Domìnguez, M., Anticó, E., Beyer, L., Aguirre, A., García-Granda, S. & Salvadó, V. 2002. Liquid-liquid extraction of palladium (III) and gold (III) with N-benzoyl-N',N'-diethylthiourea and the synthesis of a palladium benzoylthiourea complex. Polyhedron 21: 1429-1437.

Fui, M.L.W., Hang, N.K., Arifin, K., Minggu, L.J. & Kassim, M.B. 2016. Photocatalytic degradation of bromothymol blue with Ruthenium(II) bipyridyl complex in aqueous basic solution. AIP Conference Proceedings 1784(II): 1-6.

Fui, M.L.W., Hang, N.K., Minggu, L.J., Umar, A.A. & Kassim, M.B. 2012. Penentuan aras jalur tenaga kompleks tungsten nitrosilditiolena. Sains Malaysiana41(4): 439-444.

Gao, E.J., Wang, K.H., Gu, X.F., Yu, Y., Sun, Y.G., Zhang, W.Z., Yin, H.X., Wu, Q., Zhu, M.C. & Yan, X.M. 2007. A novel binuclear palladium complex with benzothiazole-2-thiolate: Synthesis, crystal structure, and interaction with DNA. Journal of Inorganic Biochemistry 101: 1404-1409.

Hehre, W.J., Radom, L., Schleyer, P.V.R. & Pople, J.A. 1986. Ab initio molecular orbital theory. Accounts of Chemical Research 9: 399-406.

Katritzky, A.R. & Gordeev, M.F. 1991. New 1 H-benzotriazole-mediated synthesis of N, N'-disubstituted thioureas and carboimides. J. Chem. Soc. 1: 2199-2203.

Kurt, G., Sevgi, F. & Mercimek, B. 2009. Synthesis, characterization, and antimicrobial activity of new benzoylthiourea ligands. Chemical Papers 63(5): 548-553.

Lee, C., Yang, W. & Parr, R. 1988. Development of the colle-salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 37(2): 785-789.

Li, G., Hu, K., Yi, C., Knappenberger Jr., K.L., Meyer, G.J., Gorelsky, S.I. & Shatruk, M. 2013. Panchromatic light harvesting and hot electron injection by Ru(II) dipyrrinates on a TiO2 surface. J. Phys. Chem. 117(34): 17399-17411.

Mark-Lee, W.F., Ng, K.H., Minggu, L.J., Umar, A.A. & Kassim, M.B. 2013. A molybdenum dithiolene complex as a potential photosensitizer for photoelectrochemical cells. International Journal of Hydrogen Energy 38(22): 9578-9584.

Mark-Lee, W.F., Rusydi, F., Minggu, L.J. & Kassim, M.B. 2017. Bis(Bipyridyl)-Ru(II)-1-benzoyl-3-(pyridine-2-yl)- 1H-pyrazole as potential photosensitiser: Experimental and density functional theory study. Jurnal Teknologi79(5-3): 117-123.

Miertuš, S., Scrocco, E. & Tomasi, J. 1981. Electrostatic interaction of a solute with a continuum. A direct utilization of Ab initio molecular potentials for the provision of solvent effects. Chemical Physics 55(1): 117-129.

Mishra, A., Fischer, M.K.R. & Bauerle, P. 2009. Metal-free organic dyes for dye-sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition 49(14): 2474-2499.

Mohammad Halim, N.I., Kassim, K., Fadzli, A.H. & Yamin, B.M. 2012. Synthesis, characterization and antibacterial studies of Cu(II) complexes thiourea. The Malaysian Journal of Analytical Sciences 16(1): 56-61.

Perez, H., Correa, R.S., Plutin, A.M. & Mascarenhas, A.Y. 2011. N-Benzoyl-N',N'-dimethylthiourea. Acta Crystallography, Sect. E 67: o647.

Raj, S.S.S., Puviarasan, K., Velmurugan, D., Jayanthi, G. & Fun, H.K. 1999. N H S hydrogen bonding in N-benzoyl-N'-methyl- N-phenylthiourea and N-benzoyl-N'-(3,4-dimethylphenyl) thiourea. Acta Crystallography C55: 1318-1320.

Saeed, S., Rashid, N., Jones, P.G., Ali, R. & Hussain, M. 2010. Synthesis, characterization and biological evaluation of some thiourea derivatives bearing benzothiazole moiety as potential antimicrobial and anticancer agents. European Journal of Medicinal Chemistry 45: 1323-1331.

Sathdeo, S., Schoultz, X., Gerber, T.I.A., Betz, R. & Hosten, E.C. 2016. Reactivity of a benzothiazole-thiourea derivative with the oxorhenium (V) core: Isolation of rhenium (III) and (V) complexes. Polyhedron. 112: 1-5.

Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S. & Arakawa, H. 2002. Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film. The Journal of Physical Chemistry B 106(6): 1363-1371.

Schoultz, X., Gerber, T.I.A. & Hosten, E.C. 2016. Rhenium (I) complexes with benzothiazole-thiourea derivatives. Polyhedron 113: 55-60.

Selvarakumaran, N., Pratheepkumar, A., Ng, S.W., Tiekink, E.R.T. & Karvembu, R. 2011. Versatile coordination behaviour of N, N-di(alkyl/aryl)-N'-benzoylthiourea ligands: Synthesis, crystal structure and cytotoxicity of palladium (II) complexes. Inorganica Chimica Acta376: 278-284.

Shome, S.C., Mazumdar, M. & Haldar, P.K. 1980. N-Alpha- Pyridyl-N'-Benzoyl thiourea as a chelating agent for the determination of iridium. J. Chem. 57(2): 139-141.

Tan, S.S., Al-abbasi, A.A., Tahir, M.I.M. & Kassim, M.B. 2014. Synthesis, structure and spectroscopic properties of cobalt(III) complexes with 1-(benzoyl-(3,3-disubstituted) thiourea. Polyhedron 68: 287-294.

Thompson, L.K., Ball, R.G. & Trotter, J. 1980. Complexes of substituted benzothiazoles. 2. Copper (II) complexes of the 'tripod' ligand tris(2-benzothiazoylmethyl)amine. Can. J. Chem. 58: 1566.

Weiqun, Z., Kuisheng, L., Yong, Z. & Lu, L. 2003. Structural and spectral studies of N-(4-chloro)benzoyl-N'-2-tolylthiourea. Journal of Molecular Structure 657: 215-223.

Yang, W., Liu, H., Li, M., Wang, F., Zhou, W. & Fan, J. 2012. Synthesis, structures and antibacterial activities of benzoylthiourea derivatives and their complexes with cobalt. Journal of Inorganic Biochemistry 116: 97-105.

Yusof, M.S., Jusoh, R.H., Khairul, W.M. & Yamin, B.M. 2010. Synthesis and characterization a series of N-(3,4- dichlorophenyl)-N'-(2,3 and 4-methylbenzoyl)thiourea derivatives. Journal of Molecular Structure 975: 280-284.

Yutronic, N., Manriquez, V., Jara, P., Witke, O., Merchan, J. & Gonzalez, G. 2000. Bis(thiourea)-1,4-diazabicyclo[2.2.2] octane. A new layered thiourea inclusion compound. Journal of the Chemical Society, Perkin Transactions 2 8: 1757.

Zhou, W.Q., Li, B.L., Cao, Y., Zhang, Y., Lu, L.D. & Yang, X.J. 2005. The structure and conformation analysis of N-2- fluorobenzoyl-N'-2-methoxy phenyl thiourea. Journal of Molecular Structure: Theochem730: 131-139.

 

 

*Corresponding author; email: mb_kassim@ukm.edu.my

 

 

 

previous