Sains Malaysiana 47(7)(2018): 1491–1499

http://dx.doi.org/10.17576/jsm-2018-4707-17

 

Synthesis, Structure and Density Functional Theory (DFT) Study of a Rhenium(I) Pyridylpyrazole Complex as a Potential Photocatalyst for CO2 Reduction

(Sintesis, Struktur dan Kajian Teori Fungsi Ketumpatan (DFT) ke atas Kompleks Renium(I) Piridilpirazol sebagai Fotomangkin untuk Penurunan CO2)

 

WUN FUI MARK-LEE1., YAN YI CHONG1., KUNG PUI LAW1,3., ISHAK B. AHMAD1

& MOHAMMAD B. KASSIM1,2*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia

 

3School of Biosciences, No. 1 Jalan Taylor’s, 47500 Subang Jaya, Selangor Darul Ehsan

Malaysia

 

Received: 17 September 2017/Accepted: 28 February 2018

 

ABSTRACT

The Re(I) complex, [Re(PyPzH)(CO)3Cl] where PyPzH = 2-(1H-pyrazol-3-yl)pyridine, was successfully synthesised and characterised with an infrared (IR), ultraviolet-visible (UV-Vis), 1H and 13C nuclear magnetic resonance (NMR) spectroscopies and X-ray crystallography. The IR spectrum featured three n(CO), n(N-H), n(C=N) and n(C=C) signals at (1860-2020), 3137, 1614 and 1513 cm-1, respectively. The UV-Vis spectrum of the complex exhibited ligand-centred®>*) electronic excitations [max = 227 nm, ε = 1.942 x 104 M-1cm-1; lmax = 292 nm, ε = 0.853 x 104 M-1cm-1] and a metal-to-ligand charge transfer (MLCT) band [lmax = 331 nm, ε = 0.467 x 104 M-1cm-1]. The 13C and 1H-NMR spectra exhibited the characteristic signals of the three CO (189.0 – 199.0 ppm) and NH (14.84 ppm), respectively. The X-ray structure of [Re(PyPzH)(CO)3Cl] showed the crystal adopted a monoclinic system with a C2/c space group [unit cell dimensions: a = 27.7422(14) Å, b = 11.1456(5) Å, c = 9.2461(4) Å with α = γ = 90º and β = 92.552(2)º]. Density functional theory (DFT) and time-dependent (TD) DFT calculations were performed to investigate the optimised structural geometry and electronic properties of the title complex. The results showed that the highest-occupied molecular orbital (HOMO) was predominantly found on the dπ-orbitals of Re(I), Cl and CO. While the lowest-unoccupied molecular orbital (LUMO) was located on the PyPzH moiety. The structural and photophysical properties of the [Re(PyPzH)(CO)3Cl] were established and the reaction enthalpies for the dissociation of Cl atom in the formation of [Re(PyPzH)(CO)3]were discussed in view of its potential application for photocatalytic CO2 reduction.

 

Keywords: Crystal structure; DFT; photocatalytic CO2 reduction; pyridylpyrazole; rhenium(I) polypyridine

 

ABSTRAK

Kompleks Re(I) [Re(PyPzH)(CO)3Cl] dengan PyPzH = 2-(1H-pirazol-3-il)piridina telah berjaya disintesis dan dicirikan dengan spektroskopi inframerah (IR), ultralembahyung-nampak (UV-Vis) dan resonans magnet nukleus (RMN) 13C dan 1H dan kristalografi sinar-X. Spektrum inframerah menunjukkan kehadiran tiga jalur n(CO), n(N-H), n(C=N) dan n(C=C) masing-masing pada (1860-2020), 3137, 1614 dan 1513 cm-1. Spektrum UV-Vis kompleks menunjukkan peralihan elektronik berpusatkan ligan®>*) [lmaks = 227 nm, ε = 1.942 x 104 M-1cm-1; lmaks = 292 nm, ε = 0.853 x 104 M-1cm-1] dan satu jalur peralihan caj logam kepada ligan (MLCT) [lmaks = 331 nm, ε = 0.467 x 104 M-1cm-1]. Spektrum RMN 13C dan 1H masing-masing menunjukkan isyarat cirian untuk tiga isyarat kumpulan CO (189.0 - 199.0 ppm) dan NH (14.84 ppm). Struktur X-ray bagi hablur tunggal [Re(PyPzH)(CO)3Cl] memberikan sistem monoklinik dengan kumpulan ruang C2/c dengan dimensi sel unit sel a = 27.7422(14) Å, b = 11.1456(5) Å, c = 9.2461(4) Å dengan α = γ = 90º dan β = 92.552(2)º. Pengiraan berdasarkan teori fungsi ketumpatan (DFT) dan DFT bersandar masa (TD) telah dijalankan untuk membangunkan struktur geometri optimum dan ciri elektronik kompleks [Re(PyPzH)(CO)3Cl]. Keputusan kajian menunjukkan orbital molekul terisi dengan tenaga tertinggi (HOMO) disetempatkan pada orbital-dπ Re(I), Cl dan CO manakala orbital molekul tidak terisi dengan tenaga terendah (LUMO) terletak pada moiety PyPzH. Struktur dan sifat fotofizikal kompleks [Re(PyPzH)(CO)3Cl] telah dikenal pasti dan entalpi tindak balas untuk penguraian atom Cl untuk pembentukan [Re(PyPzH)(CO)3]juga dibincangkan untuk aplikasi sebagai fotomangkin penurunan CO2 yang berpotensi.

 

Kata kunci: DFT; fotomangkin penurunan CO2; piridilpirazol; renium(I) polipiridina; struktur Kristal

REFERENCES

Agarwal, J., Johnson, R.P. & Li, G. 2011. Reduction of CO2 on a tricarbonyl rhenium(I) complex: Modeling a catalytic cycle. Journal of Physical Chemistry A 115(13): 2877-2881.

Amoroso, A.J., Thompson, A.M.C., Jeffery, J.C., Jones, P.L., McCleverty, J.A. & Ward, M.D. 1994. Synthesis of the new tripodal ligand tris-[3-(2′-pyridyl)pyrazol-1- yl] hydroborate, and the crystal structure of its europium(III) complex. Journal of the Chemical Society, Chemical Communications 24: 2751-2752.

Becke, A.D. 1988. Density-functional exchange-energy approximation with correct asymptotic behaviour. Physical Review A 38(6): 3098-3100.

Becke, A.D. 1993. Density functional thermochemistry III the role of exact exchange. Journal of Chemical Physics 98: 5648-5652.

Chou, P.T. & Chi, Y. 2006. Osmium- and ruthenium-based phosphorescent materials: Design, photophysics, and utilization in OLED fabrication. European Journal of Inorganic Chemistry 17: 3319-3332.

Cossi, M., Rega, N., Scalmani, G. & Barone, V. 2003. Molecules in solution with the C-PCM solvation model. Journal of Computational Chemistry 24(6): 669-681.

Davidson, E.R. & Feller, D. 1986. Basis set selection for molecular calculations. Chemical Reviews 86(4): 681-696.

Doherty, M.D., Grills, D.C. & Fujita, E. 2009. Synthesis of fluorinated ReCl(4,4′-R2-2,2′-bipyridine)(CO)3 complexes and their photophysical characterization in CH3CN and supercritical CO2. Inorganic Chemistry 48(5): 1796-1798.

Fui, M.L.W., Hang, N.K., Arifin, K., Minggu, L.J. & Kassim, M.B. 2016. Photocatalytic degradation of bromothymol blue with Ruthenium(II) bipyridyl complex in aqueous basic solution. AIP Conference Proceedings 1784(II): 1-6.

Fui, M.L.W., Hang, N.K., Minggu, L.J., Umar, A.A. & Kassim, M.B. 2012a. Determination of band energy levels for tungsten nitrosyldithiolene. Sains Malaysiana 41(4): 439-444.

Fui, M.L.W., Minggu, L.J. & Kassim, M.B. 2012b. Photo-chemical properties of molybdenum dithiolene. Sains Malaysiana 41(5): 597-601.

Gibson, D.H. & He, H. 2001. Synthesis and properties of fac-Re(dmbpy)(CO)3CHO (dmbpy = 4,4[prime or minute]-dimethyl-2,2[prime or minute]-bipyridine), a possible intermediate in reductions of CO2 catalyzed by fac-Re(dmbpy)(CO)3Cl. Chemical Communications (20): 2082-2083.

Hawecker, J., Lehn, J.M. & Ziessel, R. 1983. Combinations as homogeneous catalysts. Chemical Communications 536: 536-538.

Hehre, W.J., Radom, L., Schleyer, P.V.R. & Pople, J.A. 1986. Ab initio molecular orbital theory. Accounts of Chemical Research 9: 399-406.

Kianfar, E., Kaiser, M. & Knör, G. 2015. Synthesis, characterization and photoreactivity of rhenium and molybdenum carbonyl complexes with iminopyridine ligands. Journal of Organometallic Chemistry 799-800: 13-18.

Klein, C., Baranoff, E., Grätzel, M. & Nazeeruddin, M.K. 2011. Convenient synthesis of tridentate 2,6-di(pyrazol-1-yl)- 4-carboxypyridine and tetradentate 6,6’-di(pyrazol-1-yl)- 4,4’-dicarboxy-2,2’- bipyridine ligands. Tetrahedron Letters 52(5): 584-587.

Komala, T. & Khun, T.C. 2014. Biological carbon dioxide sequestration potential of Bacillus pumilus. Sains Malaysiana 43(8): 1149-1156.

Lee, C., Yang, W. & Parr, R. 1988. Development of the Colle- Salvetti correlation energy formula into a functional of the electron density. Physical Review B 37(2): 785-789.

Mark-Lee, W.F., Rusydi, F., Minggu, L.J. & Kassim, M.B. 2017. Bis(Bipyridyl)-Ru(II)-1-benzoyl-3-(pyridine-2-yl)- 1H-pyrazole as potential photosensitiser: Experimental and density functional theory study. Jurnal Teknologi 79(5-3): 117-123.

Mark-Lee, W.F., Ng, K.H., Minggu, L.J., Umar, A.A. & Kassim, M.B. 2013. A molybdenum dithiolene complex as a potential photosensitiser for photoelectrochemical cells. International Journal of Hydrogen Energy 38(22): 9578-9584.

Miertuš, S., Scrocco, E. & Tomasi, J. 1981. Electrostatic interaction of a solute with a continuum. A direct utilization of Ab initio molecular potentials for the prevision of solvent effects. Chemical Physics 55(1): 117-129.

Ng, K.H., Minggu, L.J., Mark-Lee, W.F., Arifin, K., Jumali, M.H.H. & Kassim, M.B. 2018. A new method for the fabrication of a bilayer WO3/Fe2O3 photoelectrode for enhanced photoelectrochemical performance. Materials Research Bulletin 98: 47-52.

Ng, K.H., Minggu, L.J., Jaafar, N.A., Arifin, K. & Kassim, M.B. 2017. Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes. Solar Energy Materials and Solar Cells 172: 361-367.

Ng, K.H., Minggu, L.J., Jumali, M.H.H. & Kassim, M.B. 2012. Nickel-doped tungsten trioxide photo electrodes for photoelectrochemical water splitting reaction. Sains Malaysiana 41(7): 893-899.

Obata, M., Kitamura, A., Mori, A., Kameyama, C., Czaplewska, J.A., Tanaka, R., Kinoshita, I. Kusumoto, T., Hashimoto, H., Harada, M., Mikata, Y., Funabiki, T. & Yano, S. 2008. Syntheses, structural characterization and photophysical properties of 4-(2-pyridyl)-1,2,3-triazole rhenium(I) complexes. Dalton Transactions 25: 3292-3300.

Pearce, B.H., Ogutu, H.F. & Luckay, R.C. 2017. Synthesis of pyrazole-based pyridine ligands and their use as extractants for nickel(II) and copper(II): Crystal structure of a copper(II)– ligand complex. European Journal of Inorganic Chemistry 2017(8): 1189-1201.

Piletska, K.O., Domasevitch, K.V., Gusev, A.N., Shul’Gin, V.F. & Shtemenko, A.V. 2015. fac-Tricarbonyl rhenium(I) complexes of triazole-based ligands: Synthesis, X-ray structure and luminescent properties. Polyhedron 102(I): 699-704.

Radaideh, J.A., Alazba, A.A., Amin, M.N., Shatnawi, Z.N. & Amin, M.T. 2016. Improvement of indoor air quality using local fabricated activated carbon from date stones. Sains Malaysiana 45(1): 59-69.

Sahara, G. & Ishitani, O. 2015. Efficient photocatalysts for CO2 reduction. Inorganic Chemistry 54(11): 5096-5104.

Seridi, A., Wolff, M., Boulay, A., Saffon, N., Coulais, Y., Picard, C., MacHura, B. & Benoist, E. 2011. Rhenium(I) and technetium(I) complexes of a novel pyridyltriazole-based ligand containing an arylpiperazine pharmacophore: Synthesis, crystal structures, computational studies and radiochemistry. Inorganic Chemistry Communications 14(1): 238-242.

Tamaki, Y. & Ishitani, O. 2017. Supramolecular photocatalysts for the reduction of CO2. ACS Catalysis 7(5): 3394-3409.

Wun, F.M.L., Pui, L.K., Heng, L.Y. & Kassim, M. 2013. Molybdenum complex as potential photosensitiser for direct water splitting. Materials Science Forum 756: 231-237.

Yamazaki, Y., Takeda, H. & Ishitani, O. 2015. Photocatalytic reduction of CO2 using metal complexes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25: 106-137.

Yilmaz, F., Balta, M.T. & Selbaş, R. 2016. A review of solar based hydrogen production methods. Renewable and Sustainable Energy Reviews 56: 171-178.

 

*Corresponding author; email: mb_kassim@ukm.edu.my

 

 

 

 

previous