Sains Malaysiana 48(11)(2019):
2297–2306
http://dx.doi.org/10.17576/jsm-2019-4811-01
Practical Predictability of the 17
December 2014 Heavy Rainfall Event over East Coast of Peninsular
Malaysia using WRF Model
(Kebolehramalan
Praktikal Peristiwa Hujan Lebat pada
17 Disember 2014 di Pantai
Timur Semenanjung Malaysia menggunakan Model WRF)
WAN MAISARAH
WAN
IBADULLAH1,2,
FREDOLIN
TANGANG*1,
LIEW
JUNENG1
& AHMAD FAIRUDZ JAMALUDDIN1,2
1Centre for Earth Sciences and Environment,
Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Malaysian Meteorological Department,
Jalan Sultan, 46667 Petaling
Jaya, Selangor Darul Ehsan, Malaysia
Received: 31 March 2019/Accepted:
15 August 2019
ABSTRACT
An investigation on the practical
predictability aspects of heavy rainfall event in the east coast
states of Peninsular Malaysia was carried out by simulating the
17 December 2014 episode using the Weather Research and Forecasting
(WRF).
The WRF model was configured with three nested domains of 36
km, 12 km, and 4 km horizontal resolution for 36 h simulations.
It was found that the cumulative rainfall amount and the location
of the heavy rainfall centre are sensitive to the choices of Cumulus Parameterisation Scheme (CPS).
The experiment with a resolution of 4 km that used the multiscale
Kain-Fritsch for the outer domains and no cumulus scheme in
the inner domain reasonably well simulated the case. Further analysis
suggests that the CPS and initialisation gave larger
impact to the forecast quality compared to boundary conditions.
Grid resolution contributed the least error.
Keywords: Cumulus schemes; East
Coast Peninsular Malaysia; heavy rainfall episode; practical predictability;
WRF model
ABSTRAK
Kajian ke atas kebolehramalan
praktikal peristiwa
hujan lebat di Pantai Timur Semenanjung
Malaysia dilakukan dengan
mensimulasi episod hujan lebat pada
17 Disember 2014 menggunakan
model berangka Weather Research and Forecasting
(WRF). Konfigurasi
model WRF adalah tiga
domain tersarang dengan
resolusi mendatar 36 km, 12 km dan 4 km. Simulasi dijalankan bagi tempoh 36 jam bermula pada 12 UTC 16 Disember
2014 sehingga 00 UTC 18
Disember 2014. Daripada
segi kebolehramalan praktikal, kajian ini mendapati keamatan
hujan terkumpul
dan lokasi pusat
hujan lebat
bergantung kepada pemilihan skim pemparameteran kumulus. Model WRF dengan
resolusi 4 km dan
gabungan skim kumulus berbilang skala Kain-Fritsch untuk dua domain terluar dan tanpa skim kumulus untuk domain dalam berupaya untuk mensimulasikan kejadian tersebut dengan baik. Kajian
juga mendapati
perubahan skim kumulus diikuti dengan syarat awal memberikan
kesan yang lebih
besar terhadap kualiti ramalan berbanding syarat sempadan. Manakala kesan resolusi grid menunjukkan ralat yang paling kecil.
Kata kunci: Episod
hujan lebat;
kebolehramalan praktikal; model
WRF; Pantai Timur Semenanjung Malaysia; skim
kumulus
REFERENCES
Arakawa,
A. & Jung, J.H. 2011. Multiscale modeling of the moist-convective
atmosphere-A review. Atmospheric Research 102(3): 263-285.
Ardie, W.A., Sow, K.S., Tangang, F., Hussin, A.G., Mahmud,
M. & Juneng, L. 2012. The performance
of different cumulus parameterization schemes in simulating the
2006/2007 southern Peninsular Malaysia heavy rainfall episodes.
Journal of Earth System Science 121(2): 317-327.
Chen,
T.C., Tsay, J.D., Yen, M.C. & Matsumoto,
J. 2013. The winter rainfall of Malaysia. Journal of Climate
26(3): 936- 958.
Dudhia, J. 1989. Numerical
study of convection observed during the winter monsoon experiment
using a mesoscale two-dimensional model. Journal of the Atmospheric
Sciences 46(20): 3077-3107.
Dudhia, J. 1996. A multi-layer
soil temperature model for MM5. Preprints, The Sixth PSU/NCAR
Mesoscale Model Users’ Workshop. pp. 22-24.
Field,
C.B., Barros, V., Stocker, T.F. & Dahe,
Q. 2012. Managing the Risks of Extreme Events and Disasters
to Advance Climate Change Adaptation: Special Report of the Intergovernmental
Panel On Climate Change. Cambridge: Cambridge University Press.
Han,
J. & Pan, H.L. 2011. Revision of convection and vertical diffusion
schemes in the NCEP global forecast system. Weather and Forecasting
26(4): 520-533.
Hong,
S.Y., Dudhia, J. & Chen, S.H. 2004.
A revised approach to ice microphysical processes for the bulk
parameterization of clouds and precipitation. Monthly Weather
Review 132(1): 103-120.
Hong,
S.Y., Noh, Y. & Dudhia, J. 2006.
A new vertical diffusion package with an explicit treatment of
entrainment processes. Monthly Weather Review 134(9): 2318-2341.
Huffman,
G.J., Bolvin, D.T., Nelkin,
E.J., Wolff, D.B., Adler, R.F., Gu,
G., Hong, Y., Bowman, K.P. & Stocker, E.F. 2007. The TRMM
multisatellite precipitation analysis
(TMPA): Quasi-global, multiyear, combined-sensor precipitation
estimates at fine scales. Journal of Hydrometeorology 8(1):
38-55.
Janjic, Z.I. 1994. The
step-mountain eta coordinate model: Further developments of the
convection, viscous sublayer, and turbulence closure schemes.
Monthly Weather Review 122(5): 927-945.
Jankov, I., Gallus Jr.,
W.A., Segal, M., Shaw, B. & Koch, S.E. 2005. The impact of
different WRF model physical parameterizations and their interactions
on warm season MCS rainfall. Weather and Forecasting 20(6):
1048-1060.
Juneng, L., Tangang, F.T. & Reason, C.J.C. 2007. Numerical case study
of an extreme rainfall event during 9-11 December 2004 over the
east coast of Peninsular Malaysia. Meteorology and Atmospheric
Physics 98(1-2): 81-98.
Kain, J.S. 2004. The Kain-Fritsch convective parameterization: An update. Journal
of Applied Meteorology 43(1): 170-181.
Kain, J.S. & Fritsch, J.M. 1993. Convective
parameterization for mesoscale models: The Kain-Fritsch
scheme. In The Representation of Cumulus Convection in Numerical
Models, edited by Emanuel, K.A. & Raymond, D.J. Boston:
American Meteorological Society. pp. 165-170.
Kerkhoven, E., Gan, T.Y., Shiiba, M., Reuter, G.
& Tanaka, K. 2006. A comparison of cumulus parameterization
schemes in a numerical weather prediction model for a monsoon
rainfall event. Hydrological Processes 20(9): 1961-1978.
Kumar,
A., Dudhia, J., Rotunno,
R., Niyogi, D. & Mohanty,
U.C. 2008. Analysis of the 26 July 2005 heavy rain event over
Mumbai, India using the Weather Research and Forecasting (WRF)
model. Quarterly Journal of the Royal Meteorological Society
134(636): 1897-1910.
Litta, A.J., Chakrapani,
B. & Mohankumar, K. 2007. Mesoscale
simulation of an extreme rainfall event over Mumbai, India, using
a high-resolution MM5 model. Meteorological Applications 14(3):
291-295.
Mahoney,
K.M. 2016. The representation of cumulus convection in high-resolution
simulations of the 2013 Colorado front range flood. Monthly
Weather Review 144(11): 4265-4278.
Mlawer, E.J., Taubman,
S.J., Brown, P.D., Iacono, M.J. &
Clough, S.A. 1997. Radiative transfer for inhomogeneous atmospheres:
RRTM, a validated correlated‐k model for the longwave. Journal
of Geophysical Research: Atmospheres 102 (D14): 16663-16682.
Nielsen-Gammon, J., Zhang, F., Odins, A. & Myoung, B. 2005.
Extreme rainfall in Texas: Patterns and predictability. Physical
Geography 26(5): 340-364.
Ooi, S.H., Samah,
A.A., Chenoli, S.N., Subramaniam,
K. & Ahmad Mazuki, M.Y. 2017. Extreme
Rainstorms that caused devastating flooding across the East Coast
of Peninsular Malaysia during November and December 2014. Weather
and Forecasting 32(3): 849-872.
Rabier, F., Klinker,
E., Courtier, P. & Hollingsworth, A. 1996. Sensitivity of
forecast errors to initial conditions. Quarterly Journal of
the Royal Meteorological Society 122(529): 121-150.
Salimun, E., Tangang,
F. & Juneng, L. 2010. Simulation
of heavy precipitation episode over eastern Peninsular Malaysia
using MM5: Sensitivity to cumulus parameterization schemes. Meteorology
and Atmospheric Physics 107(1-2): 33-49.
Skamarock, W.C., Klemp,
J.B., Dudhia, J., Gill, D.O., Barker,
D.M., Duda, M.G., Huang, X.Y., Wang, W. & Powers, J.G. 2008.
A Description of the Advanced Research WRF Version 3. National
Center for Atmospheric Research Boulder Co Mesoscale and Microscale
Meteorology Div.
Tangang, F., Supari, S., Chung, J., Cruz,
F., Salimun, E., Ngai, S., Juneng,
L., Santisirisomboon, J., Santisirisomboon,
J., Ngo_Duc, T., Tan, P.V., Narisma,
G., Singhruck, P., Gunawan,
D., Aldrian, E., Sopaheluwakan,
S., Nikulin, G., Yang, H., Remedio,
A.R.C., Sein, D. & Hein-Griggs, D. 2018. Future changes in
annual precipitation extremes over Southeast Asia under global
warming of 2°C. APN Science Bulletin 8(1). doi:10.30852/sb.2018.436.
Tangang, F., Farzanmanesh,
R., Mirzaei, A., Supari, Salimun,
E., Jamaluddin, A.F. & Juneng,
L. 2017. Characteristics of precipitation extremes in Malaysia
associated with El Niño and La Niña events. International Journal
of Climatology 37(S1): 696-716.
Tangang, F.T., Liew,
J., Salimun, E., Kwan, M.S., Loh,
J.L. & Muhamad, H. 2012. Climate change and variability over
Malaysia: Gaps in science and research information. Sains
Malaysiana 41(11): 1355-1366.
Tangang, F.T., Juneng,
L., Salimun, E., Vinayachandran,
P.N., Seng, Y.K., Reason, C.J.C., Behera,
S.K. & Yasunari, T. 2008. On the roles of the northeast cold surge,
the Borneo vortex, the Madden-Julian Oscillation, and the Indian
Ocean Dipole during the extreme 2006/2007 flood in southern Peninsular
Malaysia. Geophysical Research Letters 35(14): L14S07.
Taraphdar, S., Mukhopadhyay,
P., Leung, L.R., Zhang, F., Abhilash,
S. & Goswami, B.N. 2014. The role of moist processes in the intrinsic
predictability of Indian Ocean cyclones. Journal of Geophysical
Research: Atmospheres 119(13): 8032-8048.
Yavinchan, S., Exell,
R.H.B. & Sukawat, D. 2011. Convective
parameterization in a model for the prediction of heavy rain in
Southern Thailand. Journal of the Meteorological Society of
Japan 89A: 201-224.
Zhang, F., Odins,
A.M. & Nielsen-Gammon, J.W. 2006. Mesoscale predictability
of an extreme warm-season precipitation event. Weather and
Forecasting 21(2): 149-166.
Zhang, F., Snyder, C. & Rotunno, R. 2002. Mesoscale predictability of the “surprise”
snowstorm of 24-25 January 2000. Monthly Weather Review 130(6):
1617-1632.
Zhang, F., Snyder, C. & Rotunno, R. 2003. Effects of moist convection on mesoscale
predictability. Journal of the Atmospheric Sciences 60(9):
1173-1185.
Zheng, Y., Alapaty,
K., Herwehe, J.A., Del Genio,
A.D. & Niyogi, D. 2016. Improving
high-resolution weather forecasts using the Weather Research and
Forecasting (WRF) Model with an updated Kain-Fritsch
Scheme. Monthly Weather Review 144(3): 833-860.
*Corresponding author;
email: tangang@ukm.edu.my