Sains Malaysiana 48(11)(2019): 2297–2306

http://dx.doi.org/10.17576/jsm-2019-4811-01

 

Practical Predictability of the 17 December 2014 Heavy Rainfall Event over East Coast of Peninsular Malaysia using WRF Model

(Kebolehramalan Praktikal Peristiwa Hujan Lebat pada 17 Disember 2014 di Pantai Timur Semenanjung Malaysia menggunakan Model WRF)

 

WAN MAISARAH WAN IBADULLAH1,2, FREDOLIN TANGANG*1, LIEW JUNENG1 & AHMAD FAIRUDZ JAMALUDDIN1,2

 

1Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Malaysian Meteorological Department, Jalan Sultan, 46667 Petaling Jaya, Selangor Darul Ehsan, Malaysia

 

Received: 31 March 2019/Accepted: 15 August 2019

 

ABSTRACT

An investigation on the practical predictability aspects of heavy rainfall event in the east coast states of Peninsular Malaysia was carried out by simulating the 17 December 2014 episode using the Weather Research and Forecasting (WRF). The WRF model was configured with three nested domains of 36 km, 12 km, and 4 km horizontal resolution for 36 h simulations. It was found that the cumulative rainfall amount and the location of the heavy rainfall centre are sensitive to the choices of Cumulus Parameterisation Scheme (CPS). The experiment with a resolution of 4 km that used the multiscale Kain-Fritsch for the outer domains and no cumulus scheme in the inner domain reasonably well simulated the case. Further analysis suggests that the CPS and initialisation gave larger impact to the forecast quality compared to boundary conditions. Grid resolution contributed the least error.

 

Keywords: Cumulus schemes; East Coast Peninsular Malaysia; heavy rainfall episode; practical predictability; WRF model

 

ABSTRAK

Kajian ke atas kebolehramalan praktikal peristiwa hujan lebat di Pantai Timur Semenanjung Malaysia dilakukan dengan mensimulasi episod hujan lebat pada 17 Disember 2014 menggunakan model berangka Weather Research and Forecasting (WRF). Konfigurasi model WRF adalah tiga domain tersarang dengan resolusi mendatar 36 km, 12 km dan 4 km. Simulasi dijalankan bagi tempoh 36 jam bermula pada 12 UTC 16 Disember 2014 sehingga 00 UTC 18 Disember 2014. Daripada segi kebolehramalan praktikal, kajian ini mendapati keamatan hujan terkumpul dan lokasi pusat hujan lebat bergantung kepada pemilihan skim pemparameteran kumulus. Model WRF dengan resolusi 4 km dan gabungan skim kumulus berbilang skala Kain-Fritsch untuk dua domain terluar dan tanpa skim kumulus untuk domain dalam berupaya untuk mensimulasikan kejadian tersebut dengan baik. Kajian juga mendapati perubahan skim kumulus diikuti dengan syarat awal memberikan kesan yang lebih besar terhadap kualiti ramalan berbanding syarat sempadan. Manakala kesan resolusi grid menunjukkan ralat yang paling kecil.

 

Kata kunci: Episod hujan lebat; kebolehramalan praktikal; model WRF; Pantai Timur Semenanjung Malaysia; skim kumulus

REFERENCES

Arakawa, A. & Jung, J.H. 2011. Multiscale modeling of the moist-convective atmosphere-A review. Atmospheric Research 102(3): 263-285.

Ardie, W.A., Sow, K.S., Tangang, F., Hussin, A.G., Mahmud, M. & Juneng, L. 2012. The performance of different cumulus parameterization schemes in simulating the 2006/2007 southern Peninsular Malaysia heavy rainfall episodes. Journal of Earth System Science 121(2): 317-327.

Chen, T.C., Tsay, J.D., Yen, M.C. & Matsumoto, J. 2013. The winter rainfall of Malaysia. Journal of Climate 26(3): 936- 958.

Dudhia, J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences 46(20): 3077-3107.

Dudhia, J. 1996. A multi-layer soil temperature model for MM5. Preprints, The Sixth PSU/NCAR Mesoscale Model Users’ Workshop. pp. 22-24.

Field, C.B., Barros, V., Stocker, T.F. & Dahe, Q. 2012. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel On Climate Change. Cambridge: Cambridge University Press.

Han, J. & Pan, H.L. 2011. Revision of convection and vertical diffusion schemes in the NCEP global forecast system. Weather and Forecasting 26(4): 520-533.

Hong, S.Y., Dudhia, J. & Chen, S.H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review 132(1): 103-120.

Hong, S.Y., Noh, Y. & Dudhia, J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review 134(9): 2318-2341.

Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P. & Stocker, E.F. 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology 8(1): 38-55.

Janjic, Z.I. 1994. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review 122(5): 927-945.

Jankov, I., Gallus Jr., W.A., Segal, M., Shaw, B. & Koch, S.E. 2005. The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall. Weather and Forecasting 20(6): 1048-1060.

Juneng, L., Tangang, F.T. & Reason, C.J.C. 2007. Numerical case study of an extreme rainfall event during 9-11 December 2004 over the east coast of Peninsular Malaysia. Meteorology and Atmospheric Physics 98(1-2): 81-98.

Kain, J.S. 2004. The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology 43(1): 170-181.

Kain, J.S. & Fritsch, J.M. 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. In The Representation of Cumulus Convection in Numerical Models, edited by Emanuel, K.A. & Raymond, D.J. Boston: American Meteorological Society. pp. 165-170.

Kerkhoven, E., Gan, T.Y., Shiiba, M., Reuter, G. & Tanaka, K. 2006. A comparison of cumulus parameterization schemes in a numerical weather prediction model for a monsoon rainfall event. Hydrological Processes 20(9): 1961-1978.

Kumar, A., Dudhia, J., Rotunno, R., Niyogi, D. & Mohanty, U.C. 2008. Analysis of the 26 July 2005 heavy rain event over Mumbai, India using the Weather Research and Forecasting (WRF) model. Quarterly Journal of the Royal Meteorological Society 134(636): 1897-1910.

Litta, A.J., Chakrapani, B. & Mohankumar, K. 2007. Mesoscale simulation of an extreme rainfall event over Mumbai, India, using a high-resolution MM5 model. Meteorological Applications 14(3): 291-295.

Mahoney, K.M. 2016. The representation of cumulus convection in high-resolution simulations of the 2013 Colorado front range flood. Monthly Weather Review 144(11): 4265-4278.

Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. & Clough, S.A. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres 102 (D14): 16663-16682.

Nielsen-Gammon, J., Zhang, F., Odins, A. & Myoung, B. 2005. Extreme rainfall in Texas: Patterns and predictability. Physical Geography 26(5): 340-364.

Ooi, S.H., Samah, A.A., Chenoli, S.N., Subramaniam, K. & Ahmad Mazuki, M.Y. 2017. Extreme Rainstorms that caused devastating flooding across the East Coast of Peninsular Malaysia during November and December 2014. Weather and Forecasting 32(3): 849-872.

Rabier, F., Klinker, E., Courtier, P. & Hollingsworth, A. 1996. Sensitivity of forecast errors to initial conditions. Quarterly Journal of the Royal Meteorological Society 122(529): 121-150.

Salimun, E., Tangang, F. & Juneng, L. 2010. Simulation of heavy precipitation episode over eastern Peninsular Malaysia using MM5: Sensitivity to cumulus parameterization schemes. Meteorology and Atmospheric Physics 107(1-2): 33-49.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. & Powers, J.G. 2008. A Description of the Advanced Research WRF Version 3. National Center for Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.

Tangang, F., Supari, S., Chung, J., Cruz, F., Salimun, E., Ngai, S., Juneng, L., Santisirisomboon, J., Santisirisomboon, J., Ngo_Duc, T., Tan, P.V., Narisma, G., Singhruck, P., Gunawan, D., Aldrian, E., Sopaheluwakan, S., Nikulin, G., Yang, H., Remedio, A.R.C., Sein, D. & Hein-Griggs, D. 2018. Future changes in annual precipitation extremes over Southeast Asia under global warming of 2°C. APN Science Bulletin 8(1). doi:10.30852/sb.2018.436.

Tangang, F., Farzanmanesh, R., Mirzaei, A., Supari, Salimun, E., Jamaluddin, A.F. & Juneng, L. 2017. Characteristics of precipitation extremes in Malaysia associated with El Niño and La Niña events. International Journal of Climatology 37(S1): 696-716.

Tangang, F.T., Liew, J., Salimun, E., Kwan, M.S., Loh, J.L. & Muhamad, H. 2012. Climate change and variability over Malaysia: Gaps in science and research information. Sains Malaysiana 41(11): 1355-1366.

Tangang, F.T., Juneng, L., Salimun, E., Vinayachandran, P.N., Seng, Y.K., Reason, C.J.C., Behera, S.K. & Yasunari, T. 2008. On the roles of the northeast cold surge, the Borneo vortex, the Madden-Julian Oscillation, and the Indian Ocean Dipole during the extreme 2006/2007 flood in southern Peninsular Malaysia. Geophysical Research Letters 35(14): L14S07.

Taraphdar, S., Mukhopadhyay, P., Leung, L.R., Zhang, F., Abhilash, S. & Goswami, B.N. 2014. The role of moist processes in the intrinsic predictability of Indian Ocean cyclones. Journal of Geophysical Research: Atmospheres 119(13): 8032-8048.

Yavinchan, S., Exell, R.H.B. & Sukawat, D. 2011. Convective parameterization in a model for the prediction of heavy rain in Southern Thailand. Journal of the Meteorological Society of Japan 89A: 201-224.

Zhang, F., Odins, A.M. & Nielsen-Gammon, J.W. 2006. Mesoscale predictability of an extreme warm-season precipitation event. Weather and Forecasting 21(2): 149-166.

Zhang, F., Snyder, C. & Rotunno, R. 2002. Mesoscale predictability of the “surprise” snowstorm of 24-25 January 2000. Monthly Weather Review 130(6): 1617-1632.

Zhang, F., Snyder, C. & Rotunno, R. 2003. Effects of moist convection on mesoscale predictability. Journal of the Atmospheric Sciences 60(9): 1173-1185.

Zheng, Y., Alapaty, K., Herwehe, J.A., Del Genio, A.D. & Niyogi, D. 2016. Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain-Fritsch Scheme. Monthly Weather Review 144(3): 833-860.

 

*Corresponding author; email: tangang@ukm.edu.my