Sains Malaysiana 48(11)(2019):
2415–2425
http://dx.doi.org/10.17576/jsm-2019-4811-12
Kadar Pelepasan
Bromokarbon Jangka
Hayat Pendek oleh Rumpai
Laut Tropika
menggunakan Simulasi Laut Tropika
(Release Rates of Very Short-Lived Bromocarbon by Tropical Seaweeds using Tropical Sea Simulation)
CHANDRAN RAYNUSHA1,
MOHAMMAD
ROZAIMI1,
NUR
HIDAYAH1,
KUHAN
CHANDRU3,4,
WAN
SHAFRINA
WAN
MOHD
JAAFAR5,
NOOR
LIANA
MAT
YAJIT6
& MOHD SHAHRUL MOHD
NADZIR1,2*
1Pusat Sains Bumi & Alam Sekitar, Fakulti
Sains & Teknologi,
Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Pusat Sistem Perubahan Iklim Tropika (IKLIM), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Pusat Sains Angkasa (ANGKASA), Institut Perubahan Iklim, Tingkat 5, Bangunan Kompleks Penyelidikan, Universiti Kebangsaan Malaysia,
Bangi 43600, Selangor Darul Ehsan,
Malaysia
4Jabatan Kimia Fizikal, Universiti Teknologi Kimia, Prag, Technicka 5, 16628, Prague6- Dejvice,
Republik Czech
5Pusat Pencerapan Bumi, Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
6Pusat Pengajian Bioteknologi dan Makanan Berfungsi,
Fakulti Sains
dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received:
1 April 2019/Accepted: 15 August 2019
ABSTRAK
Bagi negara tropika yang mempunyai keberhasilan marin yang tinggi seperti Malaysia, makroalga (rumpai laut) telah
menjadi penyumbang
utama kepada pelepasan
bromokarbon jangka
hayat pendek (VSL)
ke dalam atmosfera.
Faktor abiotik
seperti keamatan cahaya dan kepekatan
klorofil a telah
diketahui mempengaruhi
pengeluaran bromokarbon oleh rumpai laut,
namun begitu
masih lagi kurang
kajian yang mengukur
secara sistematik pengaruh rumpai laut terhadap kadar
pelepasan bromokarbon
VSL
dijalankan. Oleh itu, sistem pengkulturan
rumpai laut
yang diselaraskan dengan keadaan persekitaran semula jadi disediakan
bagi mengkaji
kadar pelepasan bromokarbon VSL (CH2Br2,
CHBr3 dan CHBr2Cl)
bagi tujuh rumpai
laut merah,
perang dan hijau
iaitu Gracilaria
changii, Ulva reticulata, Caulerpa racemosa var. macrophysa, Kappaphycus alvarezii, Sargassum binderi, Sargassum siliquosum dan Padina australis. Penghasilan bromokarbon
VSL
menunjukkan kitaran
diurnal dengan kepekatan
halokarbon meningkat kepada tahap maksimum
pada waktu tengahari (1738 pmolL-1) dan
menurun apabila
keamatan cahaya dan suhu permukaan
laut (SST) berkurang.
Penghasilan bromokarbon
VSL
rumpai laut yang diletakkan di bawah cahaya matahari adalah lima kali ganda lebih tinggi daripada
penghasilan tangki
akuakultur yang diletakkan dalam persekitaran gelap yang menunjukkan berlakunya penghasilan fotokimia. Purata kadar penghasilan fotokimia untuk bromokarbon VSL daripada
uji kaji tangki akuakultur berjulat antara 1 dan 137 pmol per g-1 FW-1
h-1.
Ini menjadikan
rumpai laut merah
(Gracilaria changii)
sebagai pengeluar tertinggi. Begitu juga, bromoperoksida (BPO)
yang diekstrak daripada
kesemua rumpai laut juga menunjukkan
aktiviti tertinggi
dalam rumpai laut
merah diikuti
oleh rumpai laut
perang dan hijau.
Kata kunci:
Bahan jangka
hayat pendek (VSLS);
bromokarbon jangka
hayat pendek (VSL);
rumpai laut
ABSTRACT
Macroalgae (seaweeds)
are a major contributor in emitting very short-lived (VSL)
bromocarbons into the atmosphere especially
in tropical countries with high primary productivity such as Malaysia.
Abiotic factors such as light intensities and chlorophyll a concentrations can influence
the production of bromocarbons emitted
by seaweeds, however, not many studies have systematically quantified
their influence on the release rates of VSL bromocarbons.
Hence, to measure this, we used a seaweed culture system mimicking
a natural environment to study the release rate of VSL bromocarbons
(CH2Br2, CHBr3 and
CHBr2Cl) for several red, brown and green seaweeds (Gracilaria changii, Ulva reticulata, Caulerpa racemosa var. macrophysa,
Kappaphycus alvarezii, Sargassum binderi, Sargassum siliquosum, and Padina australis. The production
of VSL bromocarbons showed a diurnal
cycle with halocarbon concentrations increasing to a maximum level
at mid-day (1738 pmolL-1) and decreasing when light intensity
and SST decreased. The production of VSL bromocarbons of seaweeds kept in the sunlight is five times
higher than the production of aquaculture tanks placed in dark environments
indicating the occurrence of photochemical production. The average
photochemical rate for VSL bromocarbons
from aquaculture tank experiments ranges from 1 to 137 pmol
per g-1 FW-1 h-1.
This makes the red seaweeds (Gracilaria
changii) as the highest. Likewise, bromoperoxide
(BPO)
extracted from all seaweeds also showed the highest activity in
red seaweed followed by brown and green seaweed.
Keywords: Seaweeds; very short-lived (VSL)
bromocarbon; very short-lived substances
(VSLS)
REFERENCES
Abrahamsson, K. & Ekdahl, A. 1993. Gas chromatographic
determination of halogenated organic compounds in water and sediment
in the Skagerrak. Journal of Chromatography A 643(1): 239-248.
Abrahamsson, K., Lorén,
A., Wulff, A. & Wängberg,
S.Ĺ. 2004. Air-sea exchange of halocarbons: The influence of diurnal
and regional variations and distribution of pigments. Deep Sea
Research Part II: Topical Studies in Oceanography 51(22-24):
2789-2805.
Abrahamsson, K., Ekdahl, A., Collén, J. & Pedersén, M. 1995. Marine algae-A source of trichloroethylene
and perchloroethylene. Limnology and
Oceanography 40(7): 1321-1326.
Almeida,
M., Filipe, S., Humanes, M., Maia, M.F.,
Melo, R., Severino, N., Da Silva,
J.A.L., da Silva, J.F. & Wever, R.
2001. Vanadium haloperoxidases from brown
algae of the Laminariaceae family. Phytochemistry
57(5): 633-642.
Aschmann, J., Sinnhuber, B.M., Atlas, E.L. & Schauffler,
S.M. 2009. Modeling the transport of very short-lived substances
into the tropical upper troposphere and lower stratosphere. Atmospheric
Chemistry and Physics 9(23): 9237-9247.
Auer,
N.R., Manzke, B.U. & Schulz-Bull,
D.E. 2006. Development of a purge and trap continuous flow system
for the stable carbon isotope analysis of volatile halogenated organic
compounds in water. Journal of Chromatography A 1131(1):
24-36.
Carpenter,
L.J., Malin, G. & Liss,
P.S. 2000. Novel biogenic iodine-containing trihalomethanes
and other. Global Biogeochemical Cycles 14(4): 1191-1204.
Carpenter,
L.J., Reimann, S., Burkholder, J.B., Clerbaux, C., Hall, B.D., Hossaini,
R., Laube, J.C. & Yvon-Lewis,
S.A. 2014. Update on ozone-depleting substances (ODSs) and other
gases of interest to the Montreal Protocol (Chapter 1). In Scientific
Assessment of Ozone Depletion: 2014. Geneva: Global Ozone Research
and Monitoring Project-Report No. 55, World Meteorological Organization.
Carpenter,
L.J., Wevill, D.J., Hopkins, J.R., Dunk,
R.M., Jones, C.E., Hornsby, K.E. & McQuaid,
J.B. 2007. Bromoform in tropical Atlantic air from 25°N to 25°S. Geophysical
Research Letters 34: 1-5.
Collén, J., Ekdahl, A., Abrahamsson, K. &
Pedersén, M. 1994. The involvement of
hydrogen peroxide in the production of volatile halogenated compounds
by Meristiella gelidium.
Phytochemistry 36(5): 1197-1202.
Ekdahl, A., Pedersén, M. & Abrahamsson,
K. 1998. A study of the diurnal variation of biogenic volatile halocarbons.
Marine Chemistry 63(1): 1-8.
Faulkner,
D.J. 1980. Natural organohalogen compounds.
In The Natural Environment and the Biogeochemical Cycles. The
Handbook of Environmental Chemistry, edited by Craig, P.J. Berlin:
Springer. p. 251.
Fenical, W. 1975. Halogenation
in rhodophyta: A review. Journal of
Phycology 11(3): 245-259.
Gschwend, P.M., MacFarlane,
J.K. & Newman, K.A. 1985. Volatile halogenated organic compounds
released to seawater from temperate marine macroalgae.
Science 227(4690): 1033-1035.
Hughes,
C. 2001. Oceanic methyl iodide: Production rates, relationship with
photosynthetic pigments and biological loss process. MSc Thesis.
Dalhousie University (Unpublished).
Itoh,
N. & Shinya, M. 1994. Seasonal evolution of bromomethanes
from coralline algae (Corallinaceae) and
its effect on atmospheric ozone. Marine Chemistry 45(1):
95-103.
Itoh,
N., Tsujita, M., Ando, T., Hisatomi,
G. & Higashi, T. 1997. Formation and emission of monohalomethanes
from marine algae. Phytochemistry
45(1): 67-73.
Jittam, P., Boonsiri, P., Promptmas, C., Sriwattanarothai, N., Archavarungson,
N., Ruenwongsa, P. & Panijpan,
B. 2009. Red seaweed enzyme-catalyzed bromination
of bromophenol red: An inquiry-based kinetics laboratory experiment
for undergraduates. Biochemistry and Molecular Biology Education
37(2): 99-105.
Keng, F.S.L., Phang,
S.M., Rahman, N.A., Leedham, E.C., Hughes,
C., Robinson, A.D., Harris, N.R., Pyle, J.A. & Sturges,
W.T. 2013. Volatile halocarbon emissions by three tropical brown
seaweeds under different irradiances. Journal of Applied Phycology
25(5): 1377-1386.
Kongkiattikajorn, J. & Pongdam, S. 2006. Vanadium haloperoxidase
from the red alga Gracilaria
fisheri. ScienceAsia
32(1): 25-30.
Laturnus, F. 1996. Volatile
halocarbons released from arctic macroalgae.
Marine Chemistry 55(3-4): 359-366.
Laturnus, F., Adams, F. &
Wiencke, C. 1998. Methyl halides from
antarctic macroalgae. Geophysical
Research Letters 25: 773-776.
Leedham, E., Phang, S.M., Sturges, W.T. &
Malin, G. 2015. The effect of desiccation on the emission
of volatile bromocarbons from two common
temperate macroalgae. Biogeosciences
12: 387-398.
Leedham, E., Hughes, C.,
Keng, F.S.L, Phang, S.M., Malin, G. & Sturges, W.T. 2013.
Emission of atmospherically significant halocarbons by naturally
occurring and farmed tropical macroalgae.
Biogeosciences 10(6): 3615-3633.
Li,
H.P., Gong, G.C. & Hsiung, T.M. 2002.
Phytoplankton pigment analysis by HPLC and its application in algal
community investigations. Botanical Bulletin of Academia Sinica
43: 283-290.
Lim,
S.J., Mustapha, W.A.W. & Maskat, M.Y.
2017. Seaweed tea: Fucoidan-rich functional
food product development from Malaysian brown seaweed, Sargassum
binderi. Sains
Malaysiana 46(9): 1573-1579.
Lowry,
O.H., Roberts, N.R., Leiner, K.Y., Wu,
M.L. & Farr, A.L. 1954. The quantitative histochemistry
of brain I. Chemical methods. The Journal of Biological Chemistry
207: 1-18.
Manley,
S.L. & Dastoor, M.N. 1988. Methyl
Iodide (CH3I) production by kelp and associated microbes. Marine
Biology 98(4): 477-482.
Manley,
S.L., Goodwin, K. & North, W.J. 2011. Production of bromoform,
methylene bromide, and methyl iodide by macroalgae
in and distribution nearshore Southern California waters. Limnology
37(8): 1652-1659.
Marra, J. & Heinemann, K. 1982. Photosynthesis
response to sunlight variability by phytoplankton. Limnology
and Oceanography 27(6): 1141-1153.
Mithoo-Singh, P.K., Keng, F.S.L., Phang, S.M., Elvidge, E.C.L., Sturges, W.T.,
Malin, G. & Rahman, N.A. 2017. Halocarbon emissions by
selected tropical seaweeds: Species-specific and compound-specific
responses under changing pH. PeerJ
5: 1-22.
Moore,
R.M. & Groszko, W. 1999. Methyl iodide
distribution in the ocean and fluxes to the atmosphere. Journal
of Geophysical Research 104(C5): 11163-11171.
Nadzir, M.S.M., Phang,
S.M., Abas, M.R., Rahman, N.A., Samah,
A.A. & Sturges, W.T. 2014. Bromocarbons
in the tropical coastal and open ocean atmosphere during the 2009
Prime Expedition Scientific Cruise (PESC-09). Atmospheric
Chemistry and Physics 14: 8137-8148.
Nightingale, P.D., Malin, G. & Liss, P.S. 1995.
Production of chloroform and other low-molecular-weight halocarbons
by some species of macroalgae. Limnology
and Oceanography 40(4): 680-689.
Ohshiro, T., Hemrika,
W., Aibara, T., Wever,
R. & Izumi, Y. 2002. Expression of the vanadium-dependent bromoperoxidase
gene from a marine macro-alga Corallina
pilulifera in Saccharomyces cerevisiae and characterization
of the recombinant enzyme. Phytochemistry
60: 595-601.
Phang, S.M., Keng,
F.S.L., Paramjeet-Kaur, M.S., Lim, Y.K.,
Rahman, N.A., Leedham, E., Robinson, A.D.,
Harris, N.R.P., Pyle, J.A. & Sturges,
W.T. 2015. Can seaweed farming in the tropics contribute to climate
change through emission of short-lived halocarbons? Malaysian
Journal of Science 34(1): 8-19.
Raimund, S., Quack, B., Bozec, Y., Vernet, M., Rossi, V.
& Garc, V. 2011. Sources of short-lived
bromocarbons in the Iberian upwelling system. Biogeosciences 8: 1551-1564.
Richter, U. 2003. Factors influencing
methyl iodide production in the ocean and its flux to the atmosphere.
PhD Thesis. Christian Albrechts University
Kiel (Unpublished).
Robinson, A.D., Harris, N.R.P., Ashfold, M.J., Gostlow, B., Warwick,
N.J., Brien, L.M.O., Beardmore, E.J., Mohd
Shahrul, Mohd Nadzir.,
Phang, S.M., Samah,
A.A., Ong, S., Ung, H.E., Peng, L.K., Yong, S.E., Mohamad, M. &
Pyle, J.A. 2014. Long-term halocarbon observations from a coastal
and an inland site in Sabah, Malaysian Borneo. Atmospheric Chemistry
and Physics 14(16): 8369-8388.
Scarratt, M.G. & Moore, R.M. 1999. Production
of chlorinated hydrocarbons and methyl iodide by the red microalga
Porphyridium purpureum. Limnology and Oceanography
44(3): 703-707.
Schall, C., Heumann,
K.G. & Kirst, G.O. 1997. Biogenic volatile organoiodine
and organobromine hydrocarbons in the
atlantic ocean from 42°N to 72°S. Fresenius’ Journal of
Analytical Chemistry 359(3): 298-305.
Shimonishi, M., Kuwamoto,
S., Inoue, H., Wever, R., Ohshiro,
T., Izumi, Y. & Tanabe, T. 1998. Cloning and expression of the
gene for a vanadium-dependent bromoperoxidase
from a marine macro-Alga, Corallina
pilulifera. FEBS Letters 428(1-2):
105-110.
Vilter, H. 1995. Vanadium-Dependent Haloperoxidases. In Metal Ions in Biological Systems,
edited by Sigel, H. & Sigel, A. Volume 35. New York: Marcel
Dekker.
Vogel, T.M., Criddle,
C.S. & McCarty, P.L. 1987. ES Critical Reviews: Transformations
of halogenated aliphatic compounds. Environmental Science &
Technology 21(8): 722-36.
Wever, R. 1988. Ozone destruction by algae
in the arctic atmosphere. Nature 335(6190): 501-501.
Wever, R., Barnett, P. & Hemrika, W. 1997. Structure and physiological function of
vanadium chloroperoxidase. In Iron
and Related Transition Metals in Microbial Metabolism, edited
by Winkelman, G. & Carrano,
C.J. Amsterdam: Harwood Academic Publishers. pp. 415-433.
Wever, R., Tromp, M.G.M., Krenn, B.E., Marjani, A. & Van
Tol, M. 1991. Brominating activity of
the seaweed ascophyllum nodosum:
Impact on the biosphere. Environmental Science & Technology
25(3): 446-449.
Yip, W.H., Joe, L.S., Mustapha, W.A.W.,
Maskat, M.Y. & Said, M. 2014. Characterisation and stability of pigments extracted from
Sargassum binderi obtained
from Semporna, Sabah. Sains
Malaysiana 43(9): 1345-1354.
*Corresponding author;
email: shahrulnadzir@ukm.edu.my
|