Sains Malaysiana 48(11)(2019):
2405–2413
http://dx.doi.org/10.17576/jsm-2019-4811-11
Sumber Penyumbang
Karbon ke dalam Sedimen Dataran
Rumput Laut
di Muara Sungai Pulai, Johor, Malaysia
(Source Contributors
of Carbon to Sediments in the Seagrass Meadows of Sungai Pulai
Estuary, Johor, Malaysia)
NUR HIDAYAH1,
MOHAMMAD
ROZAIMI1*
& MOHD SHAHRUL MOHD
NADZIR1,2
1Center for Earth Sciences and Environment,
Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Centre for Tropical
Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
Received: 25 March 2019/Accepted:
15 August 2019
ABSTRAK
Terdapat banyak kajian karbon
biru yang menggunakan
kaedah penjejak isotop untuk mendapatkan
maklumat mengenai
sumbangan sumber bahan organik (OM)
di dalam sedimen.
Objektif kajian ini terbahagi kepada
dua iaitu untuk mengetahui sumbangan sumber kepada takungan OM dan untuk membandingkan
keberkesanan penggunaan
dua jenis isotop
stabil (δ13C dan
δ15N) atau satu
jenis isotop
stabil (δ13C) dalam
menentukan sumbangan
OM
di kawasan persampelan.
Sampel rumput laut,
makroalga, seston
dan epifit di kawasan
muara Sungai Pulai
dianalisis dan diukur menggunakan jisim aliran nisbah
isotop (IRMS). Analisis
isotop stabil
melalui R (SIAR) pula digunakan
untuk menganggarkan
sumbangan relatif keempat-empat sumber tersebut kepada takungan OM sedimen.
Sampel seston
mencatatkan nilai tertinggi (53 - 98%) dan rumput laut mencatatkan
nilai terendah
(7%) dalam sumbangan OM di
dalam sedimen
dataran rumput laut. Ini menunjukkan
sumber luar
(aloktonus) memainkan peranan yang penting kepada penambahan zarah terampai. Menggunakan dua penjejak isotop stabil, plot kepadatan menunjukkan sumbangan yang lebih kecil oleh
seston (96.18 - 99.82%) berbanding
menggunakan satu
penjejak isotop stabil (89.15 - 99.75%). Terdapat
perbezaan bererti
(p<0.05) antara nilai
julat peratus kebolehpercayaan
(CI95%) penggunaan dua
penjejak isotop stabil (δ13C dan
δ15N) dan nilai
julat peratus
kebolehpercayaan (CI95%) penggunaan
satu penjejak
isotop stabil (δ13C).
Hal ini menunjukkan
nilai julat peratus
kebolehpercayaan (CI95%) penggunaan
dua penjejak
isotop stabil lebih
kecil iaitu
bermaksud kebolehpercayaan adalah lebih tinggi
melalui kaedah
ini dalam pemodelan
sumbangan sumber
OM
di kawasan kajian.
Kata kunci:
Bahan organik;
isotop stabil; model pencampuran Bayesian; SIAR
ABSTRACT
There are many blue carbon studies
using isotopic tracer methods to obtain information on the source
contribution of organic materials (OM) in the sediment. The objectives
of this research were to identify the sources contributing to the
sediment OM pool, and to compare the reliability of using dual stable
isotopes (δ13C and δ15N)
or single stable isotope (δ13C) in determining the source
contributions of OM in the sampling area. Seagrass, macroalgae, seston and epiphyte
samples in Sungai Pulai estuary were analyzed
and measured using isotopic ratio mass spectrometry (IRMS).
The relative contribution of the four sources to the OM pool
sediment was estimated by using Stable Isotope Analysis in R (SIAR).
Seston recorded the highest value (53
- 98%) and seagrass recorded the lowest value (7%) in OM contribution
in the sediments of the seagrass meadow. This shows that external
input (allochthonous) plays an important role in the addition of
suspended particles. By using dual stable isotope tracer, density
plots showed a smaller range of contribution by seston
(96.18 - 99.82%) than using a single tracer (89.15 - 99.75%). There
is a significant difference (p<0.05) between the value of the
reliability percentage range (CI95%) using dual stable isotope tracer
(δ13C
and δ15N) than using a single tracer (δ13C).
This showed that the value of the reliability range (CI95%) using
dual stable isotope tracer is smaller and therefore the realibility
is higher in the modelling of source contributions of OM in
the study area.
Keywords: Bayesian mixing model; organic matter; SIAR;
stable isotope
REFERENCES
Ahmad,
F., Azman, S., Said, M.I.M. & Lavania-Baloo.
2015. Tropical seagrass as a bioindicator
of metal accumulation. Sains
Malaysiana 45(1): 203-210.
Ara, R., Arshad, A., Amin, S.N., Daud, S.K. & Ghaffar, M.A. 2011.
Environment and diversity of ichthyoplankton
in the seagrass beds of Sungai Pulai estuary,
Johor, Peninsular Malaysia. Journal of Food, Agriculture and
Environment 9(3&4): 733-738.
Arshad,
A., Amin, S.N. & Osman, N. 2010. Population parameters of planktonic
shrimp, Lucifer intermedius (Decapoda: Sergestidae) from Sungai
Pulai Seagrass Area Johor, Peninsular
Malaysia. Sains Malaysiana
39(6): 877-882.
Belicka, L.L. & Harvey,
H.R. 2009. The sequestration of terrestrial organic carbon in arctic
ocean sediments: A comparison of methods and implications for regional
carbon budgets. Geochimica et
Cosmochimica Acta
73(20): 6231- 6248.
Benstead, J.P., March, J.G.,
Fry, B., Ewel, K.C. & Pringle, C.M.
2006. Testing isosource: Stable isotope
analysis of a tropical fishery with diverse organic matter sources.
Ecology 87(2): 326-333.
Bouillon,
S. & Boschker, H.T.S. 2006. Bacterial
carbon sources in coastal sediments: A cross-system analysis based
on stable isotope data of biomarkers. Biogeosciences
3(2): 175-185.
Briand,
M.J., Bonnet, X., Goiran, C., Guillou,
G. & Letourneur, Y. 2015. Major sources
of organic matter in a complex coral reef lagoon: Identification
from isotopic signatures (δ13C and δ15N).
PLoS ONE 10(7): e0131555.
Bulthuis, D.A. & Woelkerling, W.J. 1983. Biomass accumulation and shading effects
of epiphytes on leaves of the seagrass, Heterozostera
Tasmanica,
in Victoria, Australia. Aquatic Botany 16(2): 137-148.
Cob,
Z.C., Arshad, A., Bujang, J.S. & Ghaffar, M.A. 2014. Spatial and temporal variations in Strombus canarium (Gastropoda: Strombidae) abundance
at Merambong seagrass bed, Malaysia. Sains Malaysiana 43(4):
503-511.
Chen,
G.C., Ulumuddin, Y.I., Pramudji,
S., Chen, S.Y., Chen, B., Ye, Y., Ou,
D.Y., Ma, Z.Y., Huang, H. & Wang, J.K. 2014. Rich soil carbon
and nitrogen but low atmospheric greenhouse gas fluxes from north
sulawesi mangrove swamps in Indonesia.
Science of the Total Environment 487: 91-96.
Collins,
A.L., Walling, D.E., Webb, L. & King, P. 2010. Apportioning
catchment scale sediment sources using a modified composite fingerprinting
technique incorporating property weightings and prior information.
Geoderma 155(3- 4): 249-261.
Dauby,
P. 1989. The stable carbon isotope ratios in benthic food webs of
the Gulf of Calvi, Corsica. Continental Shelf Research 9(2): 181-195.
De
Troch, M., Gurdebeke, S., Fiers,
F. & Vincx, M. 2001. Zonation and
structuring factors of meiofauna communities
in a tropical seagrass bed (Gazi Bay,
Kenya). Journal of Sea Research 45(1): 45-61.
Duarte,
C.M. & Cebrián, J. 1996. The fate
of marine autotrophic production. Limnology and Oceanography
41(8): 1758-1766.
Duarte,
C.M., Kennedy, H., Marbà, N. & Hendriks,
I. 2013. Assessing the capacity of seagrass meadows for carbon burial:
Current limitations and future strategies. Ocean and Coastal
Management 83: 32-38.
Duarte,
C.M., Marbà, N., Gacia,
E., Fourqurean, J.W., Beggins,
J., Barrón, C. & Apostolaki,
E.T. 2010. Seagrass community metabolism: Assessing the carbon sink
capacity of seagrass meadows. Global Biogeochemical Cycles 24(4):
GB4032.
Duarte,
C.M., Middelburg, J.J. & Caraco, N.
2005. Major role of marine vegetation on the oceanic carbon cycle.
Biogeosciences 2(1): 1-8.
Fairoz, M., Rozaimi, M. & Nastasia, W.F.
2018. Records of sea star (Echinodermata, Asteroidea)
diversity in a disturbed tropical seagrass meadow. Arxius
de Miscel·lània Zoològica
16: 243-254.
Folmer, E.O., van der Geest, M., Jansen, E., Olff, H.,
Anderson, T.M., Piersma, T. & van
Gils, J.A. 2012. Seagrass-sediment feedback: An exploration using
a non-recursive structural equation model. Ecosystems 15(8):
1380-1393.
Fry,
B. 2013. Alternative approaches for solving underdetermined isotope
mixing problems. Marine Ecology Progress Series 472: 1-13.
Fry,
B. & Sherr, E.B. 1984. δ13C
measurements as indicators of carbon flow in marine and freshwater
ecosystems. Contributions in Marine Science 27: 13-27.
Fry,
B., Scalan, R.S. & Parker, P.L. 1977.
Stable carbon isotope evidence for two sources of organic matter
in coastal sediments: Seagrasses and plankton. Geochimica
et Cosmochimica Acta 41(12): 1875-1877.
Gacia, E. & Duarte, C.M. 2001. Sediment
retention by a mediterranean posidonia oceanica meadow: The balance
between deposition and resuspension. Estuarine, Coastal and Shelf
Science 52(4): 505-514.
Gacia, E., Duarte, C.M. & Middelburg,
J.J. 2002. Carbon and nutrient deposition in a mediterranean
seagrass (Posidonia oceanica)
meadow. Limnology and Oceanography 47(1): 23-32.
Greiner, J.T., Wilkinson, G.M., McGlathery, K.J. & Emery, K.A. 2016. Sources of sediment
carbon sequestered in restored seagrass meadows. Marine Ecology
Progress Series 551: 95-105.
Harrison, P.G. 1989. Detrital processing
in seagrass systems: A review of factors affecting decay rates,
remineralization and detritivory.
Aquatic Botany 35(3-4): 263-288.
Hidayah, N., Tahirin,
S.A., Fairoz, M. & Rozaimi,
M. 2019. Carbon stock and δ13C data of sediment samples collected
from a tropical seagrass meadow in Malaysia. Plant Science Today
6(2): 132-136.
Hossain, M.S., Hashim,
M., Bujang, J.S., Zakaria,
M.H. & Muslim, A.M. 2018. Assessment of the impact of coastal
reclamation activities on seagrass meadows in Sungai Pulai
Estuary, Malaysia, using Landsat data (1994-2017). International
Journal of Remote Sensing 1161: 1-35.
Kadoya, T., Yutaka, O. & Gaku, T. 2012. Isoweb: A bayesian isotope mixing model for diet analysis of the whole
food web. PLoS ONE 7(7):
e41057.
Kennedy, H., Beggins,
J., Duarte, C.M., Fourqurean, J.W., Holmer, M., Marbá, N. & Middelburg,
J.J. 2010. Seagrass sediments as a global carbon sink: Isotopic
constraints. Global Biogeochemical Cycles 24(4): GB4026.
Krull, E., Haynes, D., Lamontagne, S., Gell, P., McKirdy, D., Hancock, G., McGowan, J. & Smernik, R. 2009. Changes in the chemistry of sedimentary
organic matter within the coorong over
space and time. Biogeochemistry 92(1-2): 9-25.
Lavery, P.S., Mateo, M.A., Serrano, O. &
Rozaimi, M. 2013. Variability in the carbon
storage of seagrass habitats and its implications for global estimates
of blue carbon ecosystem service. PLoS
ONE 8(9): e73748.
Lee, K.M., Lee, S.Y. & Connolly,
R.M. 2012. Combining process indices from network analysis with
structural population measures to indicate response of estuarine
trophodynamics to pulse organic enrichment. Ecological
Indicators 18: 652-658.
Mazarrasa, I., Marbà,
N., Lovelock, C.E., Serrano, O., Lavery,
P.S., Fourqurean, J.W., Kennedy, H., Mateo, M.A., Krause- Jensen,
D., Steven, A.D.L. & Duarte, C.M. 2015. Seagrass meadows as
a globally significant carbonate reservoir. Biogeosciences
12(5): 4107-4138.
Minagawa, M. 1992. Reconstruction of human
diet from Σ13C and Σ15N in contemporary japanese
hair: A stochastic method for estimating multi-source contribution
by double isotopic tracers. Applied Geochemistry 7(2): 145-158.
Neckles, H.A., Wetzel, R.L. & Orth, R.J.
1993. Relative effects of nutrient enrichment and grazing on epiphyte-macrophyte (Zostera marina
L.) dynamics. Oecologia
93(2): 285-295.
Neundorfer, J.V. & Kemp, W.M. 1993. Nitrogen
versus phosphorus enrichment of brackish waters: Responses of the
submersed plant Potamogeton
Perfoliatus and its associated algal community. Marine
Ecology Progress Series 94(1): 71-82.
Parnell, A.C., Inger,
R., Bearhop, S. & Jackson, A.L. 2010.
Source partitioning using stable isotopes: Coping with too much
variation. PLoS ONE 5(3): e9672.
Peterson, B.J. 1999. Stable isotopes
as tracers of organic matter input and transfer in benthic food
webs: A review. Acta Oecologica
20(4): 479-487.
Phillips, D.L. 2012. Converting isotope
values to diet composition: The use of mixing models. Journal
of Mammalogy 93(2): 342-352.
Phillips, D.L. & Gregg, J.W. 2003.
Source partitioning using stable isotopes: Coping with too many
sources. Oecologia 136(2): 261-269.
Phillips, D.L., Newsome, S.D. &
Gregg, J.W. 2005. Combining sources in stable isotope mixing models:
Alternative methods. Oecologia
144(4): 520-527.
Reef, R., Feller, I.C. & Lovelock,
C.E. 2014. Mammalian herbivores in Australia transport nutrients
from terrestrial to marine ecosystems via mangroves. Journal
of Tropical Ecology 30(3): 179-188.
Rozaimi, M., Lavery,
P.S., Serrano, O. & Kyrwood, D. 2016.
Long-term carbon storage and its recent loss in an estuarine Posidonia
australis meadow (Albany, Western
Australia). Estuarine, Coastal and Shelf Science 171: 58-65.
Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A.,
Cass, G.R. & Simoneit, B.R. 1996.
Source apportionment of airborne particulate matter using organic
compounds as tracers. Atmospheric Environment 30(22): 3837-3855.
Serrano, O., Ricart,
A.M., Lavery, P.S., Mateo, M.A., Arias-
Ortiz, A., Masque, P., Steven, A. & Duarte, C.M. 2016. Key biogeochemical
factors affecting soil carbon storage in Posidonia
meadows. Biogeosciences
13(15): 4581-4594.
Shaari, H., Shazili,
N.A.M., Abdullah, L.I. & Abdullah, N.A. 2017. Geochemistry and
clay minerals of surface sediments of southwestern Johor, Malaysia.
Malaysian Journal of Analytical Science 21(2): 312-322.
Shi, G.W., Mazlan,
A.G., Md Ali, M. & Che
Cob, Z. 2014. The Polychaeta (Annelida) communities
of the Merambong and Tanjung Adang Shoals, Malaysia, and its relationship with the environmental
variables. Malayan Nature Journal 66(1- 2): 168-183.
Short, F.T. & Frederick, T. 2003.
World Atlas of Seagrasses. Volume 41. Berkeley: University
of California Press.
Smit, A.J., Brearley,
A., Hyndes, G.A., Lavery,
P.S. & Walker, D.I. 2005. Carbon and nitrogen stable isotope
analysis of an Amphibolis griffithii
seagrass bed. Estuarine, Coastal and Shelf Science 65(3):
545-556.
Stock, B.C. & Semmens, B.X. 2016. MixSIAR GUI
User Manual. Version 3.1: 1-42 https://github.com/brianstock/MixSIAR/.
doi: 10.5281/zenodo.47719. Accessed in October 2013.
van Maren, D.S., Liew, S.C. & Hasan, G.J. 2014. The role of terrestrial
sediment on turbidity near Singapore’s coral reefs. Continental
Shelf Research 76: 75-88.
Watanabe, K. & Kuwae, T. 2015. How organic carbon derived from multiple sources
contributes to carbon sequestration processes in a shallow coastal
system? Global Change Biology 21(7): 2612-2623.
Zencich, S.J., Froend,
R.H., Turner, J.V. & Gailitis, V.
2002. Influence of groundwater depth on the seasonal sources of
water accessed by Banksia tree species on a shallow, sandy coastal
aquifer. Oecologia 131(1):
8-19.
*Corresponding author; email: mdrozaimi@ukm.edu.my
|