Sains Malaysiana 48(11)(2019): 2541–2549

http://dx.doi.org/10.17576/jsm-2019-4811-24

 

Thermal Effect on Mechanical Characteristics of Drinking Water Sludge Brick Incorporated with Rice Husk Ash

(Kesan Suhu terhadap Cirian Mekanik Bata Sisa Rawatan Air Campuran Abu Sekam Padi)

 

ZULFAHMI ALI RAHMAN*, NOR MAISALHAH MOHD SALEH, WAN MOHD RAZI IDRIS & TUKIMAT LIHAN

 

Center for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 21 March 2019/Accepted: 15 August 2019

 

ABSTRACT

Brick is among the important construction materials and commonly manufactured from mixtures of clay or sand, lime and cement. Due to limited natural resources for raw materials and highly demand for brick in construction industry have gradually increased the market price of each unit. Therefore, alternative sources are required such utilization of drinking water sludge (DWS) and rice husk ash (RHA) are potentially used as base and/or incorporated materials for manufacturing alternative brick. In this study, the brick samples which had been developed from mixtures of DWS and RHA (D80 brick) were subjected to different firing temperatures of 300°C and 500°C. The results of this study were compared to that of unfired brick and bricks which developed from 100% DWS content (D100 brick). The result also shows the volume shrinkage significantly increased at firing temperature of 500°C and was more apparently affected the D100 brick if compared to that of D80 brick. As firing temperatures were increased, the density of both brick samples decreased with D100 brick more prominent than D80 brick. The effect of temperature on the water absorption and compressive strength clearly increased especially for the D80 bricks, respectively. The effect of temperature is closely related to the presence of rice husk ash as this organic matter destroyed at high firing temperature of 500°C. The results obtained in this study suggested that firing temperature can modify and enhance the studied mechanical characteristics.

 

Keywords: Brick; compressive strength; shrinkage; sludge; temperature

 

ABSTRAK

Bata adalah antara bahan binaan yang penting dan sering dihasilkan daripada campuran liat atau pasir, kapur dan simen. Akibat daripada terhadnya sumber semula jadi sebagai bahan mentah dan permintaan yang tinggi bagi bata di dalam industri pembinaan menyebabkan peningkatan harga pasaran setiap unit bata. Oleh itu, sumber alternatif diperlukan seperti penggunaan sisa perawatan air minuman (DWS) dan abu sekam padi (RHA) adalah berpotensi digunakan sebagai asas dan/atau bahan tambahan bagi penghasilan bata alternatif tersebut. Kajian ini menggunakan sampel bata yang dihasilkan daripada campuran DWS dan RHA (D80) telah dibakar pada suhu 300°C dan 500°C. Hasil kajian ini dibandingkan dengan bata tanpa bakar dan bata yang dihasilkan daripada 100% kandungan DWS (D100). Hasil kajian juga menunjukkan pengecutan isi padu meningkat dengan suhu bakaran 500°C dan kesannya lebih ketara terhadap bata D100 berbanding bata D80. Kesan suhu terhadap penyerap air dan kekuatan mampatan masing-masing jelas meningkat bagi bata D80. Kesan suhu sangat berkait terhadap kehadiran abu sekam padi memandangkan bahan organik ini musnah pada suhu yang tinggi 500°C. Hasil daripada kajian ini mencadangkan bahawa suhu bakaran boleh mengubah suai dan meningkatkan cirian mekanik yang dikaji.

 

Kata kunci: Bata; kekuatan mampatan; pengecutan; sisa; suhu

REFERENCES

Ahmad Rusmili, S.H., Yuliati, L. & Ramli, Z. 2012. Rapid synthesis and characterization of nanosodalite synthesized using rice husk ash. The Malaysian Journal of Analytical Sciences 16(3): 247-255.

Ali Rahman, Z., Sulaiman, N., Rahim, S.A., Idris, W.M.R. & Lihan, T. 2016. Effect of cement additive and curing period on some engineering properties of treated peat soil. Sains Malaysiana 45(11): 1679-1687.

Ali Rahman, Z., Mat Noradin, M., Abdul Rahim, S., Idris, W.M.R. & Lihan, T. 2015. Some mechanical characteristics of brick developed from drinking water sludge (DWS) and admixture of rice husk ask (RHA). Proceeds. National Geoscience Conference 2015. Perdana Hotel, Kota Bharu Kelantan, 31 July - 1 August 2015. pp. 166-168.

ANSI/AN-16.1-2003 (American Nuclear Society). Measurement of the leachability of solidified low-level radioactive wastes by a short-term test procedure, Illinois.

Anyokora, N.V., Ajinomoh, C.S., Ahmed, A.S., Mohammed- Dabo, I.A., Ibrahim, J. & Anton, J.B. 2012. Microstructural and chemical characterization of water works sludge for resource utilization. WEEJS International Journal of Arts and Combined Sciences 3(1): 1-5.

Abu Bakar, H., Ibrahim, M.H.W. & Johari, M.A.M. 2011. Durability of fired clay brick masonry wall due to salt attack. International Journal of Integrated Engineering (Issue on Civil and Environmental Engineering) pp. 111-127.

Arman Ali, Z. 2005. Properties of Malaysian fired clay brick and their evaluation with the mansory specifications-A case study. MSc Thesis. Universiti Teknologi Malaysia (Unpublished).

Basha, E.A., Hashim, R., Mahmud, H.B. & Muntohar, A.S. 2005. Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials 19: 448-453.

Breesem, K.M., Faris, F.G. & Abdel-Magid, I.M. 2014. Reuse of alum sludge in construction materials and concrete works: A general overview. IUKL Research Journal 2(1): 20-30.

BS EN 772-1. 2011. Methods of Test for Masonry Units. Determination of Compressive Strength. (London: British Standard). pp. 1-18.

British Standards Institution, 1985. British Standard Specification for Clay Bricks. London, BS 3921.

Chiang, K.Y., Chou, P.H., Hua, C.R., Chien, K.L. & Cheeseman, C. 2009. Lightweight bricks manufactured from water treatment sludge and rice husk. Journal of Hazardous Materials 171: 76-82.

Chindaprasirt, P., Kanchanda, P., Sathonsaowaphak, A. & Cao, H.T. 2007. Sulfate resistance of blended cements containing fly ash and rice husk ash. Construction and Building Materials 21: 1356-1361.

Cultrone, G. & Sebastian, E. 2009. Fly ash addition in clayey materials to improve the quality of solid bricks. Construction and Building Materials 23: 1178-1184.

da Fonseca, A.V., Cruz, R.C. & Consoli, N.C. 2009. Strength properties of sandy soil-cement admixtures. Geotechnical & Geological Engineering 27: 681-686.

Demir, I. 2008. Effect of organic residues addition on the technological properties of clay bricks. Waste Management 28(3): 622-627.

Denise Alves Fungaro, D.A. & Valério da Silva, M. 2014. Utilization of water treatment plant sludge and coal fly ash in brick manufacturing. American Journal of Environmental Protection 2(5): 83-88.

Dunster, A. & Petavrati, E. 2007. Water treatment residues as a clay replacement and colorant in facing brick. Characterisation of Mineral Wastes, Resources and Processing Technologies-Integrated Waste Management for the Production of Construction Material. Funded by Defra. pp. 1-9.

Dutre, V. & Vandecasteele, C. 1995. Solidification/stabilization of arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate. Waste Management 15(1): 55-62.

Eberemu, A.O., Osinubi, K.J. & Oyelakin, M.A. 2011. Improvement of black cotton soil with ordinary Portland cement-locust bean waste ash blended. EJGE 16(2011): 619-627.

Fernando, P.R. 2017. Experimental investigation of the effect of fired clay brick on partial replacement of rice husk ash (RHA) with brick clay. Advances in Recycling & Waste Management 2(1): 1-4.

Fungaro, D.A. & Silva, M.V.D. 2014. Utilization of water treatment plant sludge and coal fly ash in brick manufacturing. American Journal of Environmental Protection 2(5): 83-88.

Hegazy, B.E.E., Fouad, H.A. & Hassanain, A.M. 2012. Incorporation of water sludge, silica fume and rice husk ash in brick making. Advances in Environmental Research 1(1): 83-96.

Hendry, A.W., Sinha, B.P. & Davies S.R. 1981. An Introduction to Load Bearing Brickwork Design. U.K.: Ellis Horwood Limited.

Hwang, C.L. & Huynh, T.P. 2015. Properties of unfired building bricks prepared from fly ash and residual rice husk ash. Applied Mechanics and Materials 754-755: 468-472.

Ismail, H., Shamsudin, R., Abdul Hamid, M.A. & Jalar, A. 2013. Synthesis and characterization of nano-wollastonite from rice husk ash and limestone. Material Science Forum 756: 43-47.

Jabatan Perangkaan Malaysia. 2015. Siaran Akhbar: Siaran Khas untuk Kerja-Kerja Pembinaan Bangunan dan Struktur Mac 2015. Pejabat Ketua Perangkaan Malaysia 10 April 2015.

Johari, I., Putra, J.R., Said, S. & Abu Bakar, B.H. 2011. Chemical and physical properties of fired-clay brick at different type of rice husk ash. International Conference on Environmental Science and Engineering 8: 171-174.

Jordan, J.W. 2001. Factors in the selection of mortar for conservation of historic masonry. 6th Australasian Masonry Conference, Adelaide, Australia.

Kadir, A.A. & Mohajerani, A. 2011. Bricks: An excellent building material for recycling wastes - A review. International Conference on Environmental Management and Engineering (EME 2011), July 2011, Canada.

Kartini, K., Mahmud, B.H. & Hamidah, M.S. 2008. Improvement on mechanical properties of rice husk ash concrete with superplasticizer. International Conference on Construction and Building Technology ICCBT. pp. 221-230.

Khan, M.N.N., Jamil, M., Karim, M.R., Zain, M.F.M. & Kaish, A.B.M.A. 2015. Utilization of rice husk ash for sustainable construction: A review. Research Journal of Applied Sciences, Engineering and Technology 9(12): 1119-1127.

Krishnan, P. & Jewaratnam, J. 2017. Recovery of water treatment residue into clay bricks. Chemical Engineering Transactions 56: 1837-1842. DOI: 103303/CET1756307.

Kumar, R. & Hooda, N. 2014. An experimental study on properties of fly ash bricks. International Journal of Research in Aeronautical and Mechanical Engineering 2(9): 2321- 3051.

Madurwar, M.V., Ralegaonkar, R.V. & Mandavgane, S.A. 2012. Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials 38(1): 872-878.

Malik, S. & Arora, B. 2015. Effect of fly ash and rice husk ash on the properties of burnt clay bricks. International Journal of Innovative Research in Computer Science & Technology 3(4): 19-21.

MS 76. 1972. Specification for Bricks and Blocks of Fired Brick Earth, Clay or Shale (Selangor: Malaysian Standard). pp. 1-74.

Mohan, N.V., Satyanarayama, P.V.V. & Rao, K.S. 2012. Performance of rice husk ash bricks. International Journal of Engineering Research and Applications 2(5): 1906-1910.

Obilade, I. 2014. Use of rice husk ash as partial replacement for cement in concrete. International Journal of Engineering 5(4): 715-725.

Palanisamy, V. 2011. Utilization of textile effluent waste sludge in brick production. International Journal of Sciences: Basic and Applied Research 4(1): 1-10.

Ramadan, M.O., Fouad, H.A. & Hassanain, A.M. 2008. Reuse of water treatment plant sludge in brick manufacturing. Journal of Applied Sciences Research 4(10): 1223-1229.

Rodrigues, L.P. & Holanda, J.N.F. 2013. Characterization of waterworks waste for use in soil-cement bricks. Advances in Ceramic Science and Engineering (ACSE) 2: 135-140.

Saleh, A.M., Rahmat, M.T., Mohd Yusoff, F.N. & Eddirizal, N.E. 2011. Utilization of palm oil fuel ash and rice husks in unfired bricks for sustainable construction materials development. MATEC Web of Conferences 15: 101032.

Singh, T.S. & Pant, K.K. 2006. Solidification/stabilization of arsenic containing solid waste using Portland cement, fly ash and polymeric materials. Journal of Hazardous Materials 131: 29-36.

Suruhanjaya Perkhidmatan Air Negara (SPAN). 2010. Malaysia Water Service Industry and Water Treatment Sludge Issues. Malaysia-Japan Economic Partnership Program. 4 October 2014.

Sutas, J., Mana, A. & Pitak, L. 2012. Effect of rice husk and rice husk ash to properties of bricks. Procedia Engineering 32: 1061-1067.

Tonnayopas, D., Tekasakul, P. & Jaritgnam, S. 2008. Effects of rice husk ash on characteristics of lightweight clay brick. Conference of Technology and Innovation for Sustainable Development (TISD2008), Khon Kaen University, Thailand, 28-29 January.

Tsega, E., Mosisa, A. & Fufa, F. 2017. Effects of firing time and temperature on physical properties of fired clay bricks. American Journal of Civil Engineering 5(1): 21-26.

USEPA 1996. Hazardous Waste Characteristics Scoping Study. US Environmental Protection Agency, Office of Solid Waste.

Weng, C.H., Lin, D.F. & Chiang, P.C. 2003. Utilization of sludge as brick materials. Advances in Environmental Research 7(3): 679-685.

Wong, S.F., Deekamwong, K., Wittikayun, J., Ling, T.C., Muzara, O., Lee, H.L., Adam, F. & Ng, E.P. 2018. Nanocrystalline K-F zeolite from rice husk silica as an eco-friendly solid base catalyst for the synthesis of jasminaldehyde under microwave irradiation. Sains Malaysiana 47(2): 337-345.

Yadav, S., Agnihotri, S., Gupta, S. & Tripathi, R.K. 2014. Incorporation of STP sludge and fly ash in brick manufacturing: An attempt to save the environment. International Journal of Advancements in Research & Technology 3(5): 138-144.

Yoshizawa, S., Tanaka, M. & Shekhar, A.V. 2004. Global Trends in Waste Generation. Recycling, Waste Treatment and Clean Technology. Spain: TMS Minerals, Metals and Materials Publishers. p. 1541-1552 (II).

Young, D. 1995. Rising Damp and Salt Attack. Australia: Department of Environment and Natural Resource.

 

*Corresponding author; email: zarah1970@ukm.edu.my

 

 

 

 

 

previous