Sains Malaysiana 48(11)(2019):
2541–2549
http://dx.doi.org/10.17576/jsm-2019-4811-24
Thermal Effect on Mechanical Characteristics
of Drinking Water Sludge Brick Incorporated with Rice Husk Ash
(Kesan Suhu terhadap Cirian
Mekanik Bata Sisa
Rawatan Air Campuran Abu Sekam Padi)
ZULFAHMI ALI
RAHMAN*,
NOR
MAISALHAH
MOHD
SALEH,
WAN
MOHD
RAZI
IDRIS
& TUKIMAT LIHAN
Center for Earth Sciences and Environment,
Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
Received:
21 March 2019/Accepted: 15 August 2019
ABSTRACT
Brick is among the important
construction materials and commonly manufactured from mixtures of
clay or sand, lime and cement. Due to limited natural resources
for raw materials and highly demand for brick in construction industry
have gradually increased the market price of each unit. Therefore,
alternative sources are required such utilization of drinking water
sludge (DWS) and rice husk ash (RHA)
are potentially used as base and/or incorporated materials for manufacturing
alternative brick. In this study, the brick samples which had been
developed from mixtures of DWS and RHA (D80
brick) were subjected to different firing temperatures of 300°C
and 500°C. The results of this study were compared to that of unfired
brick and bricks which developed from 100% DWS content (D100 brick). The result
also shows the volume shrinkage significantly increased at firing
temperature of 500°C and was more apparently affected the D100 brick
if compared to that of D80 brick. As firing temperatures were increased,
the density of both brick samples decreased with D100 brick more
prominent than D80 brick. The effect of temperature on the water
absorption and compressive strength clearly increased especially
for the D80 bricks, respectively. The effect of temperature is closely
related to the presence of rice husk ash as this organic matter
destroyed at high firing temperature of 500°C. The results obtained
in this study suggested that firing temperature can modify and enhance
the studied mechanical characteristics.
Keywords: Brick; compressive
strength; shrinkage; sludge; temperature
ABSTRAK
Bata adalah
antara bahan
binaan yang penting dan sering dihasilkan
daripada campuran
liat atau pasir,
kapur dan simen. Akibat daripada
terhadnya sumber
semula jadi sebagai
bahan mentah
dan permintaan yang tinggi bagi bata
di dalam industri
pembinaan menyebabkan peningkatan harga pasaran setiap unit bata. Oleh itu,
sumber alternatif
diperlukan seperti penggunaan sisa perawatan air minuman (DWS)
dan abu sekam
padi (RHA) adalah
berpotensi digunakan
sebagai asas dan/atau bahan tambahan
bagi penghasilan
bata alternatif tersebut. Kajian ini menggunakan sampel bata yang dihasilkan daripada campuran DWS dan
RHA
(D80) telah dibakar
pada suhu 300°C
dan 500°C. Hasil kajian ini dibandingkan
dengan bata
tanpa bakar dan
bata yang dihasilkan
daripada 100% kandungan DWS
(D100). Hasil kajian
juga menunjukkan pengecutan isi padu meningkat dengan suhu bakaran
500°C dan kesannya lebih ketara terhadap
bata D100 berbanding bata D80. Kesan suhu terhadap penyerap
air dan kekuatan
mampatan masing-masing jelas meningkat bagi bata D80. Kesan suhu sangat
berkait terhadap
kehadiran abu sekam
padi memandangkan
bahan organik ini
musnah pada
suhu yang tinggi 500°C. Hasil daripada kajian ini mencadangkan
bahawa suhu
bakaran boleh mengubah
suai dan meningkatkan cirian mekanik yang dikaji.
Kata kunci: Bata; kekuatan
mampatan; pengecutan;
sisa; suhu
REFERENCES
Ahmad
Rusmili, S.H., Yuliati,
L. & Ramli, Z. 2012. Rapid synthesis
and characterization of nanosodalite synthesized
using rice husk ash. The Malaysian Journal of Analytical Sciences
16(3): 247-255.
Ali
Rahman, Z., Sulaiman, N., Rahim, S.A.,
Idris, W.M.R. & Lihan, T. 2016. Effect
of cement additive and curing period on some engineering properties
of treated peat soil. Sains Malaysiana 45(11):
1679-1687.
Ali
Rahman, Z., Mat Noradin, M., Abdul Rahim,
S., Idris, W.M.R. & Lihan, T. 2015.
Some mechanical characteristics of brick developed from drinking
water sludge (DWS) and admixture of rice husk ask (RHA). Proceeds.
National Geoscience Conference 2015. Perdana
Hotel, Kota Bharu Kelantan, 31 July -
1 August 2015. pp. 166-168.
ANSI/AN-16.1-2003
(American Nuclear Society). Measurement of the leachability
of solidified low-level radioactive wastes by a short-term test
procedure, Illinois.
Anyokora, N.V., Ajinomoh, C.S., Ahmed, A.S., Mohammed- Dabo,
I.A., Ibrahim, J. & Anton, J.B. 2012. Microstructural and chemical
characterization of water works sludge for resource utilization.
WEEJS International Journal of Arts and Combined Sciences 3(1):
1-5.
Abu
Bakar, H., Ibrahim, M.H.W. & Johari, M.A.M. 2011. Durability
of fired clay brick masonry wall due to salt attack. International
Journal of Integrated Engineering (Issue on Civil and Environmental
Engineering) pp. 111-127.
Arman
Ali, Z. 2005. Properties of Malaysian fired clay brick and their
evaluation with the mansory specifications-A
case study. MSc Thesis. Universiti Teknologi
Malaysia (Unpublished).
Basha, E.A., Hashim,
R., Mahmud, H.B. & Muntohar, A.S.
2005. Stabilization of residual soil with rice husk ash and cement.
Construction and Building Materials 19: 448-453.
Breesem, K.M., Faris, F.G. & Abdel-Magid, I.M.
2014. Reuse of alum sludge in construction materials and concrete
works: A general overview. IUKL Research Journal 2(1): 20-30.
BS
EN 772-1. 2011. Methods of Test for Masonry Units. Determination
of Compressive Strength. (London: British Standard). pp. 1-18.
British
Standards Institution, 1985. British Standard Specification for
Clay Bricks. London, BS 3921.
Chiang,
K.Y., Chou, P.H., Hua, C.R., Chien, K.L.
& Cheeseman, C. 2009. Lightweight bricks manufactured from water
treatment sludge and rice husk. Journal of Hazardous Materials
171: 76-82.
Chindaprasirt, P., Kanchanda, P., Sathonsaowaphak,
A. & Cao, H.T. 2007. Sulfate resistance of blended cements containing
fly ash and rice husk ash. Construction and Building Materials
21: 1356-1361.
Cultrone, G. & Sebastian,
E. 2009. Fly ash addition in clayey materials to improve the quality
of solid bricks. Construction and Building Materials 23:
1178-1184.
da
Fonseca, A.V., Cruz, R.C. & Consoli,
N.C. 2009. Strength properties of sandy soil-cement admixtures.
Geotechnical & Geological Engineering 27: 681-686.
Demir, I. 2008. Effect of organic residues
addition on the technological properties of clay bricks. Waste
Management 28(3): 622-627.
Denise
Alves Fungaro, D.A. & Valério
da Silva, M. 2014. Utilization of water treatment plant sludge and
coal fly ash in brick manufacturing. American Journal of Environmental
Protection 2(5): 83-88.
Dunster, A. & Petavrati, E. 2007. Water treatment residues as a clay replacement
and colorant in facing brick. Characterisation
of Mineral Wastes, Resources and Processing Technologies-Integrated
Waste Management for the Production of Construction Material.
Funded by Defra. pp. 1-9.
Dutre, V. & Vandecasteele,
C. 1995. Solidification/stabilization of arsenic-containing waste:
Leach tests and behaviour of arsenic in
the leachate. Waste Management 15(1): 55-62.
Eberemu, A.O., Osinubi, K.J. & Oyelakin, M.A.
2011. Improvement of black cotton soil with ordinary Portland cement-locust
bean waste ash blended. EJGE 16(2011): 619-627.
Fernando,
P.R. 2017. Experimental investigation of the effect of fired clay
brick on partial replacement of rice husk ash (RHA) with brick clay.
Advances in Recycling & Waste Management 2(1): 1-4.
Fungaro, D.A. & Silva,
M.V.D. 2014. Utilization of water treatment plant sludge and coal
fly ash in brick manufacturing. American Journal of Environmental
Protection 2(5): 83-88.
Hegazy, B.E.E., Fouad,
H.A. & Hassanain, A.M. 2012. Incorporation
of water sludge, silica fume and rice husk ash in brick making.
Advances in Environmental Research 1(1): 83-96.
Hendry,
A.W., Sinha, B.P. & Davies S.R. 1981. An Introduction to
Load Bearing Brickwork Design. U.K.: Ellis Horwood
Limited.
Hwang,
C.L. & Huynh, T.P. 2015. Properties of unfired building bricks
prepared from fly ash and residual rice husk ash. Applied Mechanics
and Materials 754-755: 468-472.
Ismail,
H., Shamsudin, R., Abdul Hamid, M.A. &
Jalar, A. 2013. Synthesis and characterization of nano-wollastonite from rice husk ash and limestone. Material
Science Forum 756: 43-47.
Jabatan Perangkaan Malaysia. 2015. Siaran
Akhbar: Siaran
Khas untuk Kerja-Kerja
Pembinaan Bangunan
dan Struktur Mac 2015. Pejabat Ketua Perangkaan
Malaysia 10 April 2015.
Johari,
I., Putra, J.R., Said, S. & Abu Bakar, B.H. 2011. Chemical and
physical properties of fired-clay brick at different type of rice
husk ash. International Conference on Environmental Science and
Engineering 8: 171-174.
Jordan,
J.W. 2001. Factors in the selection of mortar for conservation of
historic masonry. 6th Australasian Masonry Conference, Adelaide,
Australia.
Kadir, A.A. & Mohajerani,
A. 2011. Bricks: An excellent building material for recycling wastes
- A review. International Conference on Environmental Management
and Engineering (EME 2011), July 2011, Canada.
Kartini, K., Mahmud, B.H.
& Hamidah, M.S. 2008. Improvement
on mechanical properties of rice husk ash concrete with superplasticizer.
International Conference on Construction and Building Technology
ICCBT. pp. 221-230.
Khan, M.N.N.,
Jamil, M., Karim, M.R., Zain, M.F.M. & Kaish,
A.B.M.A. 2015. Utilization of rice husk ash for sustainable construction: A review. Research Journal of Applied Sciences,
Engineering and Technology 9(12): 1119-1127.
Krishnan, P. & Jewaratnam, J. 2017. Recovery of water treatment residue into
clay bricks. Chemical Engineering Transactions 56: 1837-1842.
DOI: 103303/CET1756307.
Kumar, R. & Hooda,
N. 2014. An experimental study on properties of fly ash bricks.
International Journal of Research in Aeronautical and Mechanical
Engineering 2(9): 2321- 3051.
Madurwar, M.V., Ralegaonkar,
R.V. & Mandavgane, S.A. 2012. Application
of agro-waste for sustainable construction materials: A review.
Construction and Building Materials 38(1): 872-878.
Malik, S. & Arora, B. 2015. Effect
of fly ash and rice husk ash on the properties of burnt clay bricks.
International Journal of Innovative Research in Computer Science
& Technology 3(4): 19-21.
MS 76. 1972. Specification for
Bricks and Blocks of Fired Brick Earth, Clay or Shale (Selangor:
Malaysian Standard). pp. 1-74.
Mohan, N.V., Satyanarayama,
P.V.V. & Rao, K.S. 2012. Performance of rice husk ash bricks.
International Journal of Engineering Research and Applications
2(5): 1906-1910.
Obilade, I. 2014. Use of rice husk ash as
partial replacement for cement in concrete. International Journal
of Engineering 5(4): 715-725.
Palanisamy, V. 2011. Utilization of textile
effluent waste sludge in brick production. International Journal
of Sciences: Basic and Applied Research 4(1): 1-10.
Ramadan, M.O., Fouad, H.A. & Hassanain, A.M. 2008. Reuse of water treatment plant sludge
in brick manufacturing. Journal of Applied Sciences Research
4(10): 1223-1229.
Rodrigues, L.P. & Holanda, J.N.F. 2013. Characterization of waterworks waste
for use in soil-cement bricks. Advances in Ceramic Science and
Engineering (ACSE) 2: 135-140.
Saleh, A.M., Rahmat,
M.T., Mohd Yusoff,
F.N. & Eddirizal, N.E. 2011. Utilization
of palm oil fuel ash and rice husks in unfired bricks for sustainable
construction materials development. MATEC Web of Conferences
15: 101032.
Singh, T.S. & Pant, K.K. 2006.
Solidification/stabilization of arsenic containing solid waste using
Portland cement, fly ash and polymeric materials. Journal of
Hazardous Materials 131: 29-36.
Suruhanjaya Perkhidmatan
Air Negara (SPAN). 2010. Malaysia Water Service Industry and
Water Treatment Sludge Issues. Malaysia-Japan Economic Partnership
Program. 4 October 2014.
Sutas, J., Mana, A. & Pitak, L. 2012. Effect of rice husk and rice husk ash to properties
of bricks. Procedia Engineering 32: 1061-1067.
Tonnayopas, D., Tekasakul,
P. & Jaritgnam, S. 2008. Effects of
rice husk ash on characteristics of lightweight clay brick. Conference
of Technology and Innovation for Sustainable Development (TISD2008),
Khon Kaen University,
Thailand, 28-29 January.
Tsega, E., Mosisa,
A. & Fufa, F. 2017. Effects of firing
time and temperature on physical properties of fired clay bricks.
American Journal of Civil Engineering 5(1): 21-26.
USEPA 1996. Hazardous Waste Characteristics
Scoping Study. US Environmental Protection Agency, Office of
Solid Waste.
Weng, C.H., Lin, D.F. & Chiang, P.C.
2003. Utilization of sludge as brick materials. Advances in Environmental
Research 7(3): 679-685.
Wong, S.F., Deekamwong,
K., Wittikayun, J., Ling, T.C., Muzara,
O., Lee, H.L., Adam, F. & Ng, E.P. 2018. Nanocrystalline
K-F zeolite from rice husk silica as an eco-friendly solid base
catalyst for the synthesis of jasminaldehyde
under microwave irradiation. Sains
Malaysiana 47(2): 337-345.
Yadav, S., Agnihotri,
S., Gupta, S. & Tripathi, R.K. 2014.
Incorporation of STP sludge and fly ash in brick manufacturing:
An attempt to save the environment. International Journal of
Advancements in Research & Technology 3(5): 138-144.
Yoshizawa, S., Tanaka, M. & Shekhar, A.V. 2004. Global Trends in Waste Generation.
Recycling, Waste Treatment and Clean Technology. Spain: TMS
Minerals, Metals and Materials Publishers. p. 1541-1552 (II).
Young, D. 1995. Rising Damp and
Salt Attack. Australia: Department of Environment and Natural
Resource.
*Corresponding author;
email: zarah1970@ukm.edu.my
|