Sains Malaysiana
49(1)(2020): 201-209
http://dx.doi.org/10.17576/jsm-2020-4901-24
Air
Pollutant Index Calendar-Based Graphics for Visualizing Trends Profiling and
Analysis
(Indeks Pencemaran Udara berdasarkan Kalendar Grafik untuk Pemprofilan Tren Visualisasi dan Analisis)
NUR HAIZUM ABD RAHMAN1*
& MUHAMMAD HISYAM LEE2
1Department
of Mathematics, Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department
of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru,
Johor Darul Takzim,Malaysia
Received: 3 July 2019/Accepted: 17 October 2019
ABSTRACT
Detection of air quality
abnormality is important as an early warning system for air quality control and
management. The information can raise citizens’ awareness towards current air
quality status. By using time series plot, the data pattern can
be identified but not able to exactly determine the abnormality due to overcrowded
plot. Therefore, visualization data profiling was presented in this
study by using seven years Malaysia daily air pollutant index to improve the
detection. Result shown, the developed approach can simply identify the poor
air quality across the month and year. Malaysia air quality was good and
consistent between November and May. However, upward trend existed between June
and October due to the forest fire happened in Sumatra. This visualization
approach improved air pollution detection profiling and it is useful for
related agencies to guide the control actions to be taken. This approach can be
applied to any countries and data set to give more competent information.
Keywords: Air
pollutant index; calendar; data visualization; profiling
ABSTRAK
Pengesanan kelainan kualiti udara adalah penting sebagai sistem amaran awal untuk kawalan dan pengurusan kualiti udara. Maklumat ini dapat meningkatkan kesedaran masyarakat terhadap status kualiti udara semasa. Dengan menggunakan plot siri masa, corak data dapat dikenal pasti tetapi tidak dapat menentukan secara tepat kelainan akibat plot yang sesak. Oleh itu, untuk meningkatkan pengesanan, pemprofilan data visualisasi telah dibincangkan dalam kajian ini dengan menggunakan indeks pencemaran udara harian di Malaysia selama tujuh tahun. Keputusan menunjukkan pendekatan yang digunakan dapat mengenal pasti kualiti udara yang tidak baik sepanjang bulan dan tahun. Kualiti udara di Malaysia adalah baik dan konsisten antara November dan Mei. Bagaimanapun, aliran menaik wujud antara bulan Jun dan Oktober akibat kebakaran hutan di Sumatra. Pendekatan profil visualisasi dapat mengesan pencemaran udara dan berguna kepada agensi berkaitan untuk membimbing tindakan kawalan yang akan diambil. Pendekatan ini boleh digunakan untuk mana-mana negara dan set data untuk memberikan maklumat yang lebih cekap.
Kata kunci: Indeks pencemaran udara; kalendar; pemprofilan; visualisasi data
REFERENCES
Afroz, R., Hassan,
M.N. & Ibrahim, N.A. 2003. Review of air pollution and health
impacts in Malaysia. Environmental Research 92(2):
71-77.
Ahmat, H., Yahaya, A.S. & Ramli, N.A. 2015. PM10 analysis for three industrialized areas using extreme value. Sains
Malaysiana 44(2): 175-186.
Dilla, W.N. & Raschke, R.L. 2015. Data visualization for
fraud detection: Practice implications and a call for future research. International
Journal of Accounting Information Systems 16: 1-22.
Gualtieri, G., Crisci, A., Tartaglia, M., Toscano, P.,
Vagnoli, C., Andreini, B.P. & Gioli, B. 2014. Analysis of 20-year air
quality trends and relationship with emission data: The case of Florence
(Italy). Urban Climate 10(P3):
530-549.
Hugine, A.L., Guerlain, S.A. & Turrentine, F.E. 2014.
Education: Visualizing surgical quality data with treemaps. Journal of
Surgical Research 191:
74-83.
Lanzafame, R., Scandura, P.F., Famoso, F., Monforte, P. &
Oliveri, C. 2014. Air quality data for Catania: Analysis and investigation case
study 2010-2011. Energy Procedia 45(2):
681-690.
Lee, S., Kim, E. & Monsen, K.A. 2015. Public health nurse
perceptions of Omaha System data visualization. International Journal of
Medical Informatics 84(10):
826-834.
Leh, O.L.H., Ahmad, S., Aiyub, K., Jani, Y.M. & Hwa, T.K.
2012. Urban air environmental health indicators for Kuala Lumpur city. Sains
Malaysiana 41(2): 179-191.
Moustris, K.P., Ziomas, I.C. & Paliatsos, A.G. 2010.
3-day-ahead forecasting of regional pollution index for the pollutants NO2,
CO, SO2, and O3 using artificial neural networks in
Athens, Greece. Water, Air, and Soil Pollution 209(1-4): 29-43.
Sansuddin, N., Ramli, N.A., Yahaya, A.S., Yusof, N.F.F.M.,
Ghazali, N.A. & Madhoun, W.A. 2011. Statistical analysis of PM10
concentrations at different locations in Malaysia. Environmental Monitoring
and Assessment 180(1-4):
573-588.
United States Environmental Protection Agency. 2014. Air
quality index: A guide to air quality and your health. In EPA.
https://doi.org/10.1023/A:1020370119096.
Wang, E., Cook, D. & Hyndman, R. 2018. Calendar-based
graphics for visualizing people’s daily schedules. Journal of Statistical
Software 10(2): 1-19. doi:10.18637/jss.v000.i00.
*Corresponding
author; email: nurhaizum_ar@upm.edu.my
|