Sains Malaysiana 49(1)(2020): 211-222
http://dx.doi.org/10.17576/jsm-2020-4901-25
Thermal
Marangoni Flow Past a Permeable Stretching/Shrinking Sheet in a Hybrid Cu-Al2O3/Water
Nanofluid
(Aliran Haba Marangoni terhadap Permukaan Telap Meregang/Mengecut dalam Nanobendalir Hibrid Cu-Al2O3/Air)
NAJIYAH SAFWA KHASHI'IE1,2,
NORIHAN MD ARIFIN*1,3, IOAN POP4, ROSLINDA
NAZAR5, EZAD HAFIDZ HAFIDZUDDIN6 & NADIHAH
WAHI3
1Institute
for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
2Fakulti Teknologi Kejuruteraan Mekanikal
dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100
Durian Tunggal, Melaka, Malaysia
3Department
of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
4Department of Mathematics,
Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
5Pusat Pengajian Sains Matematik, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
6Centre
of Foundation Studies for Agricultural Science, Universiti Putra Malaysia,
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Received:
17 June 2019/Accepted: 18 October 2019
ABSTRACT
The present study
accentuates the Marangoni convection flow and heat transfer characteristics of
a hybrid Cu-Al2O3/water nanofluid past a
stretching/shrinking sheet. The presence of surface tension due to an imposed
temperature gradient at the wall surface induces the thermal Marangoni
convection. A suitable transformation is employed to convert the boundary layer
flow and energy equations into a nonlinear set of ordinary (similarity)
differential equations. The bvp4c solver in MATLAB software is utilized to
solve the transformed system. The change in velocity and temperature, as well
as the Nusselt number with the accretion of the dimensionless Marangoni,
nanoparticles volume fraction and suction parameters, are discussed and
manifested in the graph forms. The presence of two solutions for both stretching
and shrinking flow cases are noticeable with the imposition of wall mass
suction parameter. The adoption of stability analysis proves that the first
solution is the real solution. Meanwhile, the heat transfer rate significantly
augments with an upsurge of the Cu volume fraction (shrinking flow case) and
Marangoni parameter (stretching flow case). Both Marangoni and Cu volume
fraction parameters also can decelerate the boundary layer separation process.
Keywords: Dual
solutions; hybrid nanofluid; Marangoni convection; stability analysis; suction
ABSTRAK
Kajian
ini menonjolkan aliran perolakan Marangoni dan ciri-ciri pemindahan
haba untuk nanobendalir hibrid Cu-Al2O3/air
terhadap permukaan meregang/mengecut. Kehadiran ketegangan permukaan
disebabkan oleh perbezaan suhu yang dikenakan pada permukaan
dinding telah menghasilkan perolakan haba Marangoni. Satu transformasi
bersesuaian digunakan untuk menukar persamaan aliran lapisan sempadan dan tenaga ke dalam
persamaan pembezaan biasa bukan linear. Fungsi bvp4c dalam perisian
Matlab telah digunakan untuk menyelesaikan sistem yang diubah. Perubahan
dalam halaju dan suhu, serta nombor Nusselt dengan penambahan pemboleh ubah tanpa dimensi iaitu Marangoni, pecahan isi padu nanozarah
dan sedutan, turut dibincangkan dan diwujudkan dalam bentuk graf.
Kehadiran dua penyelesaian untuk kedua-dua kes aliran meregang dan
mengecut dikenal pasti dengan penggunaan pemboleh ubah sedutan. Penggunaan analisis kestabilan
telah mengesahkan yang penyelesaian pertama adalah penyelesaian
sebenar. Pada masa yang sama, kadar pemindahan haba meningkat dengan
banyak dengan penambahan pecahan isi padu Cu
(kes aliran mengecut) dan pemboleh ubah Marangoni (kes aliran meregang). Kedua-dua pemboleh ubah Marangoni
dan pecahan isi padu Cu
juga dapat memperlahankan proses pemisahan aliran sempadan.
Kata kunci: Analisis kestabilan; nanobendalir hibrid;
penyelesaian dwi; perolakan Marangoni; sedutan
REFERENCES
Ahmadi, M. &
Willing, G. 2018. Heat transfer measurement in water based nanofluids.
International Journal of Heat and Mass Transfer 118: 40-47.
Ahmadi,
M.H., Mirlohi, A., Alhuyi Nazari, M. & Ghasempour, R. 2018.
A review of thermal conductivity of various nanofluids. Journal
of Molecular Liquids 265: 181-188.
Akbarzadeh,
M., Rashidi, S., Karimi, N. & Ellahi, R. 2018. Convection of heat and
thermodynamic irreversibilities in two-phase, turbulent nanofluid flows in
soalr heaters by corrugated absorber plates. Advanced Powder Technology 29: 2243-2254.
Akilu,
S., Sharma, K.V., Baheta, A.T. & Mamat, R. 2016. A review of thermophysical
properties of water based composite nanofluids. Renewable and Sustainable
Energy Reviews 66: 654-678.
Alamri,
S.Z., Ellahi, R., Shehzad, N. & Zeeshan, A. 2019. Convective radiative
plane Poiseuille flow of nanofluid through porous medium with slip: An
application of Stefan blowing. Journal of Molecular Liquids 273:
292-304.
Amirsom, N.A., Uddin, M.J., Basir, M.F.M., Ismail, A.I.M., Bég,
O.A. & Kadir, A. 2019. Three-dimensional bioconvection nanofluid flow from a bi-axial
stretching sheet with anisotropic slip. Sains Malaysiana
48(5): 1137-1149.
Arifin,
N.M., Nazar, R. & Pop, I. 2013. Similarity
solution of Marangoni convection boundary layer flow over a flat
surface in a nanofluid. Journal of Applied Mathematics
2013: Article ID. 634746.
Arifin, N.M., Nazar, R. & Pop, I.
2011. Non-isobaric Marangoni boundary layer flow for Cu, Al2O3 and TiO2
nanoparticles in a water-based fluid. Meccanica 46(4): 833-843.
Aziz, R.C., Hashim, I. & Abbasbandy, S. 2018. Flow and heat
transfer in a nanofluid thin film
over an unsteady stretching sheet. Sains Malaysiana 47(7):
1599-605.
Babu,
J.A.R., Kumar, K.K. & Rao, S.S. 2017. State-of-art review on hybrid nanofluids. Renewable and Sustainable Energy Reviews 77: 551-565.
Bahiraei,
M. & Mazaheri, N. 2018. Application of a
novel hybrid nanofluid containing graphene-platinum nanoparticles in
a chaotic twisted geometry for utilization in miniature devices: Thermal and energy
efficiency considerations. International
Journal of Mechanical Science 138: 337-349.
Bachmann, M.,
Avilov, V., Gumenyuk, A. & Rethmeier, M. 2016. Numerical assessment and experimental verification of the influence of
the Hartmann effect in laser beam welding processes by steady magnetic fields. International Journal of Thermal Science 101: 24-34.
Bournival, G.,
Ata, S. & Jameson, G.J. 2017. Bubble and froth stabilizing agents in froth flotation. Mineral Processing and Extractive Metallurgy Review 38(6): 366-387.
Bakar,
N.A., Bachok, N. & Arifin, N.M. 2018. Stability
analysis on the flow and heat transfer of nanofluid past a stretching/shrinking
cylinder with suction effect. Results in Physics 9: 1335-1344.
Cui,
C.Y., Li, X.D., Fang, C., Zhang, W.L., Ruan, Z.W., Cui, X.G., Lu, J.Z., Xia,
C.D. & Lu, Y.F. 2018. Effects of Marangoni
convection on the embedding dynamic behavior of SiC nano-particles into the Al
molten pool during laser micro-melting. Materials & Design 143:
256-267.
Devi,
S.S.U. & Devi, S.P.A. 2017. Heat transfer enhancement of Cu-Al2O3/water hybrid
nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical
Society 36(2): 419-433.
Devi,
S.P.A. & Devi, S.S.U. 2016a. Numerical investigation of hydromagnetic
hybrid Cu- Al2O3/water nanofluid flow over a permeable
stretching sheet with suction. International Journal of Nonlinear Sciences
and Numerical Simulation 17(5): 249-257.
Devi,
S.S.U. & Devi, S.P.A. 2016b. Numerical
investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid
flow over a stretching sheet with effecting Lorentz force subject to Newtonian
heating. Canadian
Journal of Physics 94(5): 490-496.
Dzulkifli,
N., Bachok, N., Yacob, N., Arifin, N.M. & Rosali, H. 2018. Unsteady stagnation-point flow and heat transfer over
a permeable exponential stretching/shrinking sheet in nanofluid with slip
velocity effect: A stability analysis. Applied Sciences 8(11):
2172.
Ellahi,
R., Alamri, S.Z., Basit, A. & Majeed,
A. 2018. Effects of MHD and slip on heat
transfer and boundary layer flow over a moving plate based on specific entropy
generation. Journal of Taibah University for Science 12(4):
476-482.
Ellahi,
R., Zeeshan, A. & Hassan, M. 2016. Particle shape effects on Marangoni convection
boundary layer flow of a nanofluid. International Journal of
Numerical Methods for Heat & Fluid Flow 26(7): 2160-2174.
Ellahi,
R. 2013. The effects of MHD and temperature dependent viscosity on the flow of
non-Newtonian nanofluid in a pipe: Analytical
solutions. Applied Mathematical Modelling 37(3): 1451-1457.
Fang,
T., Yao, S., Zhang, J. & Aziz, A. 2010. Viscous flow over a shrinking sheet
with a second order slip flow model. Communications in Nonlinear Science and
Numerical Simulation 15(7): 1831-1842.
Ghadikolaei,
S.S., Yassari, M., Sadeghi, H., Hosseinzadeh, K. & Ganji, D.D. 2017.
Investigation on thermophysical properties of TiO2-Cu/H2O hybrid nanofluid
transport dependent on shape factor in MHD stagnation point flow. Powder
Technology 322: 428-438.
Ghalambaz, M., Sheremet, M.A., Mehryan,
S.A., Kashkooli, F.M. & Pop, I. 2019. Local thermal non-equilibrium analysis of
conjugate free convection within a porous enclosure occupied with Ag-MgO hybrid nanofluid. Journal of Thermal Analysis and
Calorimetry 135(2): 1381-1398.
Gupta, M., Singh, V., Kumar,
S., Kumar, S., Dilbaghi, N. & Said,
Z. 2018. Up to date review on the synthesis and
thermophysical properties of hybrid nanofluids. Journal of Cleaner
Production 190: 169-192.
Hamid,
R.A. & Arifin, N.M. 2014. The effect of wall
suction/injection on MHD Marangoni convection boundary layer flow in nanofluid. AIP Conference Proceedings 1605(1): 386-391.
Hamid,
R.A. & Nazar, R. 2016. Stability analysis of
MHD thermosolutal Marangoni convection boundary layer flow. AIP
Conference Proceedings 1750(1): 030022.
Harris,
S.D., Ingham, D.B. & Pop, I. 2009. Mixed convection boundary-layer flow
near the stagnation point on a vertical surface in a porous medium: Brinkman
model with slip. Transport in Porous Media 77(2): 267-285.
Hassan,
M., Marin, M., Alsharif, A. & Ellahi, R. 2018a. Convection heat transfer
flow of nanofluid in a porous medium over wavy surface. Physics Letters A 382: 2749-2753.
Hassan,
M., Marin, M., Ellahi, R. & Alamri, S.Z. 2018b. Exploration of convective
heat transfer and flow characteristics synthesis by Cu-Ag/water
hybrid-nanofluids. Heat Transfer Research 49(18): 1837-1848.
Hassan,
M., Ellahi, R., Bhatti, M.M. & Zeeshan, A. 2019. A comparative study of
magnetic and non-magnetic particles in nanofluid propagating over a wedge. Canadian
Journal of Physics 97(3): 277-285.
Hayat,
T. & Nadeem, S. 2017. Heat transfer enhancement with Ag–CuO/water hybrid
nanofluid. Results in Physics 7: 2317-2324.
Hayat,
T., Nadeem, S. & Khan, A.U. 2018. Rotating flow of Ag-CuO/H2O
hybrid nanofluid with radiation and partial slip boundary effects. European
Physical Journal E 41(6): 75.
Hayat,
T., Khan, M.I., Farooq, M., Alsaedi, A. & Yasmeen, T. 2017. Impact of Marangoni convection in the flow of carbon-water nanofluid with
thermal radiation. International
Journal of Heat and Mass Transfer 106: 810-815.
Huminic,
G. & Huminic, A. 2018. Hybrid nanofluids for heat transfer applications - A state-of-the-art review. International
Journal of Heat and Mass Transfer 125: 82-103.
Huminic,
G. & Huminic, A. 2019. The influence of
hybrid nanofluids on the performances of elliptical tube: Recent research and
numerical study. International Journal of Heat and Mass Transfer 129: 132-143.
Jana,
S., Salehi-Khojin, A. & Zhong, W.H. 2019. Enhancement of fluid thermal conductivity
by the addition of single and hybrid nano-additives. Thermochimica Acta 462(1-2): 45-55.
Jamaludin, A.,
Nazar, R. & Pop, I. 2018. Ingham problem for mixed convection
flow of a nanofluid over a moving vertical plate with suction and injection
effects. Sains
Malaysiana 47(9): 2213-2221.
Kamal, F., Zaimi, K., Ishak, A. & Pop, I. 2019. Stability analysis of mhd
stagnation-point flow towards a permeable stretching/shrinking sheet in a nanofluid
with chemical reactions effect. Sains
Malaysiana 48(1): 243-250.
Kamyar, A., Saidur, R. & Hasanuzzaman,
M. 2012. Application of computational fluid
dynamics (CFD) for nanofluids. International Journal of Heat and Mass
Transfer 55(15-16): 4104-4115.
Khanafer,
K., Vafai, K. & Lightstone, M. 2003. Buoyancy driven heat transfer
enhancement in a two-dimensional enclosure utilizing nanofluids. International
Journal of Heat and Mass Transfer 46(19): 3639-3653.
Khashi'ie, N.S., Arifin, N.M., Hafidzuddin, E.H., Wahi, N.
& Ilias, M.R. 2019. Magnetohydrodynamics (MHD) flow and heat transfer of a
doubly stratified nanofluid using Cattaneo-Christov model. Universal
Journal of Mechanical Engineering 7(4): 206-214.
Kidess, A., Kenjereš, S., Righolt,
B.W. & Kleijn, C.R. 2016. Marangoni driven turbulence in high energy surface
melting processes. International Journal of Thermal Science 104:
412-422.
Lin, Y. & Zheng,
L. 2015. Marangoni boundary layer flow and heat
transfer of copper-water nanofluid over a porous medium disk. AIP
Advances 10: 107225.
Lin, Y.,
Li, B., Zheng, L. & Chen, G. 2016. Particle shape and radiation effects on Marangoni
boundary layer flow and heat transfer of copper-water nanofluid driven by an
exponential temperature. Powder Technology 301: 379-386.
Mahat, R., Rawi, N.A., Kasim, A.R. & Shafie, S. 2018.
Mixed convection flow of viscoelastic nanofluid past a horizontal circular
cylinder with viscous dissipation. Sains Malaysiana 47(7): 1617-23.
Mat, N.A.,
Arifin, N.M., Nazar, R., Ismail, F. & Pop, I. 2017. Radiation effects on Marangoni convection boundary layer over a
permeable surface. Meccanica 48(1): 83-89.
Merkin,
J.H. 1986. On dual solutions occurring in mixed
convection in a porous medium. Journal of Engineering Mathematics 20(2): 171-179.
Miklavčič,
M. & Wang, C.Y. 2006. Viscous flow due to a shrinking sheet. Quarterly
of Applied Mathematics 64(2): 283-290.
Minakuchi, H.,
Okano, Y. & Dost, S. 2017. Effect of
thermo-solutal Marangoni convection on the azimuthal wave number in a liquid
bridge. Journal of Crystal Growth 468: 502-505.
Mohamed, M.K., Noar, N.A., Salleh, M.Z. & Ishak, A. 2016.
Free convection boundary layer flow on a horizontal circular cylinder in a
nanofluid with viscous dissipation. Sains Malaysiana 45(2): 289-296.
Nadeem, S., Abbas, N. & Khan, A.U. 2017. Characteristics of three dimensional stagnation point
flow of hybrid nanofluid past a
circular cylinder. Results in
Physics 8: 829-835.
Naganthran, K., Nazar, R. & Pop,
I. 2018. Effects of thermal radiation on mixed
convection flow over a permeable vertical shrinking flat plate in an Oldroyd-B fluid. Sains Malaysiana 47(5):
1069-1076.
Oztop, H.F. & Abu-Nada, E. 2008. Numerical study of
natural convection in partially heated rectangular enclosures filled with
nanofluids. International Journal of Heat and Fluid Flow 29(5): 1326-1336.
Rashidi,
S., Akar, S., Bovand, M. & Ellahi, R. 2018. Volume of fluid model to
simulate the nanofluid flow and entropy generation in a single slope solar
still. Renewable Energy 115: 400-410.
Raza,
M.Q., Kumar, N. & Raj, R. 2018. Surfactants
for bubble removal against buoyancy. Scientific Reports 6: 19113.
Rostami,
M.N., Dinarvand, S. & Pop, I. 2018. Dual solutions for mixed convective
stagnation-point flow of an aqueous silica-alumina
hybrid nanofluid. Chinese Journal of Physics 56(5): 2465-2478.
Roşca,
A.V. & Pop, I. 2013. Flow and heat transfer
over a vertical permeable stretching/shrinking sheet with a second order slip. International Journal of Heat and Mass Transfer 60: 355-364.
Sarkar,
J., Ghosh, P. & Adil, A. 2015. A review on hybrid nanofluids: Recent
research, development and applications. Renewable and Sustainable Energy
Reviews 43: 164-177.
Sastry, D.R.,
Murti, A.S. & Kantha, T.P. 2013. The effect
of heat transfer on MHD Marangoni boundary layer flow past a flat plate in
nanofluid. International Journal of Engineering Mathematics 2013:
Article ID. 581507.
Shampine, L.F., Gladwell, I., Shampine, L. & Thompson, S.
2003. Solving ODES with Matlab. Cambridge: Cambridge University Press.
Sheikholeslami, M. & Ganji,
G. 2017. Influence of magnetic field on CuO-H2O nanofluid flow considering Marangoni boundary layer. International
Journal of Hydrogen Energy 42(5): 2748-2755.
Sheikholeslami, M. &
Chamkha, A.J. 2017. Influence of Lorentz forces
on nanofluid forced convection considering Marangoni convection. Journal
of Molecular Liquids 225: 750-757.
Sheikholeslami, M.,
Ellahi, R., Shafee, A. & Li, Z. 2019. Numerical
investigation for second law analysis of ferrorfluid inside a porous semi
annulus: An application of entropy generation and exergy loss. International Journal of Numerical Methods for Heat and Fluid Flow 29(3): 1079-1102.
Sidik,
N.A.C., Adamu, I.M., Jamil, M.M., Kefayati, G.H.R., Mamat, R. & Najafi, G.
2016. Recent progress on hybrid nanofluids in heat transfer applications: A
comprehensive review. International Communications in Heat and Mass Transfer 78: 68-79.
Sohail,
A., Fatima, M., Ellahi, R. & Akram, K.B. 2019. A videographic assessment of
ferrofluid during magnetic drug targeting: An application of artifical
intelligence in nanomedicine. Journal of Molecular Liquids 285: 47-57.
Soid, S.K., Ishak, A. & Pop, I. 2018. MHD
stagnation-point flow over a stretching/shrinking sheet in a micropolar fluid
with a slip boundary. Sains Malaysiana 47(11): 2907-2916.
Soltani, O.
& Akbari, M. 2016. Effects of temperature
and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene
glycol hybrid nanofluid: Experimental study. Physica E:
Low-dimensional Systems and Nanostructures 84: 564-570.
Sundar,
L.S., Sharma, K.V., Singh, M.K. & Sousa, A.C.M. 2017. Hybrid nanofluids
preparation, thermal properties, heat transfer and friction factor - A review. Renewable and Sustainable
Energy Reviews 68: 185-198.
Timofeev, V.V., Kalaev, V.V. & Ivanov, V.G. 2015. 3D melt convection in sapphire crystal growth: Evaluation of physical
properties. International Journal of Heat and Mass Transfer 87:
42-48.
Vafaei, M., Afrand, M., Sina, N., Kalbasi, R., Sourani, F.
& Teimouri, H. 2017. Evaluation of thermal conductivity of MgO-MWCNTs/EG
hybrid nanofluids based on experimental data by selecting optimal artificial
neural networks. Physica E: Low-dimensional Systems and
Nanostructures 85: 90-96.
Waini, I., Ishak, A. & Pop, I. 2019. Hybrid nanofluid
flow and heat transfer over a nonlinear permeable stretching/shrinking
surface. International Journal of Numercial Methods for Heat and Fluid
Flow 29(9): 3110-3127.
Weidman,
P.D., Kubitschek, D.G. & Davis, A.M.J. 2006. The effect of transpiration on
self-similar boundary layer flow over moving surfaces. International Journal
of Engineering Science 44(11-12):
730-737.
Yahaya, R., Arifin, N.M. & Mohamed Isa, S. 2018.
Stability analysis on magnetohydrodynamic flow of casson fluid over a shrinking
sheet with homogeneous-heterogeneous reactions. Entropy 20(9):
652.
Yousif,
M.A., Ismael, H.F., Abbas, T. & Ellahi, R. 2019. Numerical study of
momentum and heat transfer of MHD Carreau nanofluid over exponentially
stretched plate with internal heat source/sink and radiation. Heat Transfer
Research 50(7): 649-658.
Zaimi, K., Ishak, A. & Pop, I. 2017. Unsteady flow of a
nanofluid past a permeable shrinking cylinder using Buongiorno's
model. Sains Malaysiana 46(9): 1667-1674.
*Corresponding
author; email: norihana@upm.edu.my
|