Sains Malaysiana 49(1)(2020): 75-84

http://dx.doi.org/10.17576/jsm-2020-4901-09

 

Effect of Crystallinity of Zeolite Beta on Physicochemical Properties and Performance of Cobalt Catalysts

(Kesan Habluran Beta Zeolit pada Sifat Fisikokimia dan Prestasi Pemangkin Kobalt)

 

PIAW PHATAI1, SIRINUCH LOIHA2, SANCHAI PRAYOONPOKARACH3 & JATUPORN WITTAYAKUN3*

 

1Department of Chemistry, Faculty of Science, Udon Thani Rajabhat University, Udon Thani 41000, Thailand

 

2Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

 

3School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

 

Received: 6 September 2019/Accepted: 10 October 2019

 

ABSTRACT

In the present work, the effect of crystallinity of zeolite beta in a sodium form (NaBEA) on physicochemical properties and performance of NaBEA-supported cobalt catalysts was investigated. The incipient wetness impregnation method was utilized in the synthesis of NaBEA-supported cobalt catalysts with various Co loadings (4, 7 and 10 wt. %). NaBEA materials with high and low crystallinities (NaBEA-H and NaBEA-L) were synthesized using fumed silica with aging times of 72 and 48 h, respectively. In comparison to NaBEA-L, higher XRD peak intensities and surface area were observed for NaBEA-H. After impregnation, NaBEA-L displayed better dispersion of Co species and lower reducibility than NaBEA-H due to stronger metal-support interaction. Catalytic performance for n-butane hydrogenolysis via Co/NaBEA-H and Co/NaBEA-L catalysts was compared. In butane hydrogenolysis, the higher conversion was attained using Co/NaBEA-H with 7 and 10 wt. % when compared to Co/NaBEA-L with similar loadings. Multiple hydrogenolysis occurred on all catalysts producing methane as the only product. The most effective catalyst was determined to be 7Co/NaBEA-H due to the higher surface area and uniform particles of the cobalt species.

 

Keywords: Butane hydrogenolysis; cobalt; crystallinity; metal dispersion; zeolite beta

 

ABSTRAK

Dalam kertas ini, kesan habluran beta zeolit dalam bentuk natrium (NaBEA) pada sifat fisikokimia dan prestasi pemangkin kobalt disokong-NaBEA dikaji. Kaedah impregnasi basah peringkat awal telah digunakan dalam sintesis pemangkin kobalt disokong-NaBEA dengan pelbagai pembebanan Co (4, 7 dan 10 % bt.). Bahan NaBEA dengan habluran tinggi dan rendah (NaBEA-H dan NaBEA-L) telah disintesis menggunakan silika wasap dengan perumuran masa 72 dan 48 jam. Berbanding NaBEA-L, puncak keamatan XRD yang tinggi dan luas permukaan diperhatikan untuk NaBEA-H. Selepas impregnasi, NaBEA-L menunjukkan serakan spesies Co yang lebih baik dan pengurangan yang rendah daripada NaBEA-H disebabkan oleh interaksi sokongan logam yang kuat. Prestasi pemangkinan untuk hidrogenolisis n-butana melalui pemangkin Co/NaBEA-H dan Co/NaBEA-L telah dibandingkan. Dalam hidrogenolisis butana, penukaran tinggi telah dicapai menggunakan 7 and 10 % bt. Co/NaBEA-H jika dibandingkan dengan Co/NaBEA-L untuk pembebanan yang sama. Pelbagai hidrogenolisis berlaku kepada semua pemangkin yang mengeluarkan metana. Pemangkin yang paling berkesan adalah 7Co/NaBEA-H disebabkan luas permukaan yang tinggi serta zarah seragam spesies kobalt.

 

Kata kunci: Beta zeolit; butana hidrogenolisis; kobalt; habluran; serakan logam

 

REFERENCES

Adebajo, M.O. & Frost, R.L. 2005. Oxidative benzene methylation with methane over MCM-41 and zeolite catalysts:  Effect of framework aluminum, SiO2/Al2O3 ratio, and zeolite pore structure. Energy Fuel 19(3): 783-790.

Altwasser, S., Welker, C., Traa, Y. & Weitkamp, J. 2005. Catalytic cracking of n-octane on small-pore zeolites. Microporous and Mesoporous Materials 83(1-3): 345-356.

Baerlocher, C. & McCusker, L.B. 2017. Database of Zeolite Structures. http://www.iza-structure.org/databases/.

Bayati, B., Babaluo, A.A. & Karimi, R. 2008. Hydrothermal synthesis of nanostructure NaA zeolite: The effect of synthesis parameters on zeolite seed size and crystallinity. Journal of the European Ceramic Society 28(14): 2653-2657.

Bazin, D., Kovács, I., Guczi, L., Parent, P., Laffon, C., De Groot, F., Ducreux, O. & Lynch J. 2000. Genesis of Co/SiO2 catalysts: XAS study at the cobalt LIII, II absorption edges. Journal of Catalysis 189(2): 456-462.

Bressel, A., Donauer, T., Sealy, S. & Traa, Y. 2008. Influence of aluminum content, crystallinity and crystallite size of zeolite Pd/H-ZSM-5 on the catalytic performance in the dehydroalkylation of toluene with ethane. Microporous and Mesoporous Materials    109(1-3): 278-286.

Byrappa, K. & Yoshimura, M. 2001. Handbook of Hydrothermal Technology-A Technology for Crystal Growth and Materials Processing. Norwich: William Andrew Publishing.

Camblor, M.A., Corma, A. & Valencia, S. 1998. Characterization of nanocrystalline zeolite Beta. Microporous and Mesoporous Materials 25(1-3): 59-74.

Čejka, J., Kotrla, J. & Krejči, A. 2004. Disproportionation of trimethyl benzenes over large pore zeolites: Catalytic and adsorption study. Applied Catalysis A: General 277(1-2): 191-199.

Chansiriwat, W., Tanangteerapong, D. & Wantala, K. 2016. Synthesis of zeolite from coal fly ash by hydrothermal method without adding alumina and silica sources: Effect of aging temperature and time. Sains Malaysiana 45(11): 1723-1731.

Chan, T.K. & Smith, K.J. 1990. Oxidative coupling of methane over cobalt-magnesium and manganese-magnesium mixed oxide catalysts. Applied Catalysis 60(1): 13-31.

Chao, K.J., Lin, C.C., Lin, C.H., Wu, H.C., Tseng, C.W. & Chen, S.H. 2000. n-Heptane hydroconversion on platinum-loaded mordenite and beta zeolites: The effect of reaction pressure. Applied Catalysis A: General 203(2): 211-220.

Chen, H.H., Shen, S.C., Chen, X.C. & Kawi, S. 2004. Selective catalytic reduction of NO over Co/beta-zeolite: Effects of synthesis condition of beta-zeolites, Co precursor, Co loading method and reductant. Applied Catalysis B: Environmental 50(1): 37-47.

Chu, W., Chernavskii, P.A., Gengembre, L., Pankina, G.A., Fongerland, P. & Khodakov, A.Y. 2007. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts. Journal of Catalysis 252(2): 215-230.

Davis, B.H. & Occelli, M.L. 2016. Chapter 8: Fischer-Tropsch synthesis: Effect of CO conversion on product selectivities during deactivation or by changing space velocity at stable conditions over unpromoted and Ru-promoted 25%Co/Al2O3 catalysts. In Fischer-Tropsch Synthesis, Catalysts, and Catalysis: Advances and Applications. 1st edition. Boca Raton: CRC Press. pp. 134-140.

Espinosa, G., Domínguez, J.M., Morales-Pacheco, P., Tobon, A., Aguilar, M. & Benítez, J. 2011. Catalytic behavior of Co/(Nanoβ-Zeolite) bifunctional catalysts for Fischer-Tropsch reactions. Catalysis Today 166(1): 47-52.

Girardon, J.S., Quinet, E., Griboval-Constant, A., Chernavskii, P.A., Gengembre, L. & Khodakov, A.Y. 2007. Cobalt dispersion, reducibility, and surface sites in promoted silica-supported FischerTropsch catalysts. Journal of Catalysis 248(2): 143-157.

Guczi, L. & Kiricsi, I. 1999. Zeolite supported mono- and bimetallic systems: Structure and performance as CO hydrogenation catalysts. Applied Catalysis A: General 186(1-2): 375-394.

Guo, W., Xiong, C., Huang, L. & Li, Q. 2001. Synthesis and characterization of composite molecular sieves comprising zeolite Beta with MCM-41 structures. Journal of Materials Chemistry 11(7): 1886-1890.

Hong, J., Chernavskii, P.A., Khodakov, A.Y. & Chu, W. 2009. Effect of promotion with ruthenium on the structure and catalytic performance of mesoporous silica (smaller and larger pore) supported cobalt Fischer-Tropsch catalysts. Catalysis Today 140(3-4): 135-141.

Jabloński, J.M., Okal, J., Potoczna-Petru, D. & Krajczyk, L. 2003. High temperature reduction with hydrogen, phase composition, and activity of cobalt/silica catalysts. Journal of Catalysis 220(1): 146-160.

Jacobs, G., Ji, Y., Davis, B.H., Cronauer, D., Kropf, A.J. & Marshall, C.L. 2007. Fischer-Tropsch synthesis: Temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Applied Catalysis A: General 333(2): 177-191.

Jansen, J.C., Creyghton, E.J., Njo, S.L., van Koningveld, H. & van Bekkum, H. 1997. On the remarkable behavior of zeolite Beta in acid catalysis. Catalysis Today 38(2): 205-212.

Karami, D. & Rohani, S. 2009. Synthesis of pure zeolite Y using soluble silicate, a two-level factorial experimental design. Chemical Engineering and Processing: Process Intensification 48(8): 1288-1292.

Khemthong, P., Klysubun, W., Prayoonpolarach, S., Roessner, F. & Wittayakun, J. 2010a. Comparison between cobalt and cobalt-platinum supported on zeolite NaY: Cobalt reducibility and their catalytic performance for butane hydrogenolysis. Journal of Industrial and Engineering Chemistry 16(4): 531-538.

Khemthong, P., Klysubun, W., Prayoonpokarach, S., Roessner, F. & Wittayakun, J. 2010b. Reducibility of cobalt species impregnated on NaY and HY zeolites. Materials Chemistry and Physics 212(1-2): 131-137.

Khodakov, A.Y., Lynch, J., Bazin, D., Rebours, B., Zanier, N., Moisson, B. & Chaumette, P. 1997. Reducibility of cobalt species in silica-supported Fischer-Tropsch catalysts. Journal of Catalysis 168(1): 16-25.

Loiha, S., Prayoonpokatach, S., Songsiriritthigun, P. & Wittayakun, J. 2009. Synthesis of zeolite beta with pretreated rice husk silica and its transformation to ZSM-12. Materials Chemistry and Physics 115(2-3): 637-640.

Lomot, D., Juszczyk, W., Karpinski, Z. & Larsson, R. 2002. Hydrogenolysis of ethane on  silica-supported cobalt catalysts. Journal of Molecular Catalysis A: Chemical 186(1-2): 163-172.

Nicolaides, C.P. 1999. A novel family of solid acid catalysts: Substantially amorphous or partially crystalline zeolitic materials. Applied Catalysis A: General 185(2): 211-217.

Petitto, S.C., Marsh, E.M., Carson, G.A. & Langell, M.A. 2008. Cobalt oxide surface chemistry: The interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. Journal of Molecular Catalysis A: Chemical 281(1-3): 49-58. 

Storck, S., Bretinger, H. & Maier, W.F. 1998. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Applied Catalysis A: General 174(1-2): 137-146.

Tompkins, H.G. & Augis, J.A. 1981. The oxidation of cobalt in air from room temperature to 467°C. Oxidation of Metals 16(5-6): 355-369.

Wang, W.J. & Chen, Y.W. 1991. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts. Applied Catalysis 77(2): 223-233.

 

*Corresponding author; email: jatuporn@sut.ac.th

 

 

 

 

previous