Sains
Malaysiana 49(1)(2020): 85-92
http://dx.doi.org/10.17576/jsm-2020-4901-10
Analysis of Free Oligosaccharides (fOS) from Wild-Type Saccharomyces
cerevisiae (Baker's Yeast) using Two Different Extraction Methods
(Analisis Oligosakarida Bebas (fOS) daripada Saccharomyces
cerevisiae (Yis Baker) Jenis Liar menggunakan Dua Kaedah Pengekstrakan
Berbeza)
IQBAL JALALUDIN1, AMIRUL HUSNA SUDIN1, DHARSHINI ELANGOVAN1, HUSSEIN M. AL-BAJALAN1, NUR
MAISARAH SARIZAN2, NOOR LIANA MAT YAJIT3, KAMALRUL AZLAN AZIZAN2, ABDUL MUNIR ABDUL MURAD3, FARAH DIBA ABU
BAKAR3, DOMINIC S. ALONZI4 & MUKRAM MOHAMAD
MACKEEN1,2*
1Department
of Chemical Sciences, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Institute
of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
3Department
of Biosciences and Biotechnology, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
4Oxford
Glycobiology Institute, University of Oxford, Oxford OX1 3QU, United Kingdom
Received: 1 October 2019/Accepted:
22 October 2019
ABSTRACT
The
glycomic profiles of free oligosaccharides (fOS) derived from misfolded N-
and O-linked
glycoproteins and lipid-linked oligosaccharides are important molecular
signatures in various biological processes and serve as a readout
of functional properties such as glycosidase inhibition. Several
glycan extraction methods are available based on different sorbent
chemistries that may influence the analytical profiles obtained.
However, there is limited availability of studies comparing the
effects of sorbent chemistries on glycan profiles. Therefore, in our study, the fOS profiles
from wild-type Saccharomyces
cerevisiae (Baker's yeast)
extracted using two common methods namely mixed-bed ion-exchange
(MBIE) [AG50W-X12 (H+) and AG2-X8 (Cl-)] and
reversed-phase (C18) sorbents were compared using total carbohydrate
(phenol sulfuric acid) and total protein (bicinchoninic acid, BCA)
assays, thin-layer chromatography (TLC) and high-performance liquid
chromatography-evaporative light scattering detector (HPLC-ELSD)
analyses. MBIE extraction contained higher oligosaccharide and protein
(0.26 mg/mL and 1.8 mg/mL) content than C18 extraction (0.11 mg/mL
and 0.2 mg/mL). TLC analysis (butanol: ethanol: water = 6:3:1 and
5:4:1) showed the presence of fOS in both the MBIE and C18 extracts
based on the detection of orcinol active (UV-inactive) spots. Similar
peaks were present in the HPLC-ELSD chromatograms for both extractions
methods with MBIE showing higher abundance.
Glycan unit (GU) analysis of the dextran standard using HPLC-ELSD
showed that the largest possible oligosaccharide structures detected
were only di/trisaccharides. Based on all these results, MBIE extraction
is a more suitable carbohydrate extraction technique compared to
C18 extraction for subsequent profiling and functional studies of
fOS.
Keywords:
Free oligosaccharides (fOS); glycans; HPLC-ELSD; Saccharomyces cerevisiae; TLC
ABSTRAK
Profil
glikomik oligosakarida bebas (fOS) yang diterbit daripada glikoprotein
N- dan
O- yang tersalah lipat
serta oligosakarida terpaut-lipid (LLO) adalah penanda molekul penting
dalam pelbagai proses biologi dan berfungsi sebagai bacaan terhadap
sifat berfungsi seperti perencatan glikosidase. Beberapa kaedah
pengekstrakan glikan boleh didapati berdasarkan pelbagai kimia bahan
erap yang berbeza yang mungkin mempengaruhi profil analitik. Walau
bagaimanapun, kajian terhadap perbandingan kesan kimia bahan erap
terhadap profil glikan adalah terhad. Oleh itu, dalam kajian ini
profil fOS daripada Saccharomyces cerevisiae (yis Baker) jenis liar diekstrak menggunakan dua kaedah yang digunakan
secara meluas iaitu bahan erap dan pertukaran ion lapisan-campuran
(MBIE) AG50W-X12 (H+)
dan AG2-X8 (Cl-)] fasa berbalik (C18) dibandingkan dengan jumlah karbohidrat (asid fenol
sulfurik) dan jumlah protein (asid bisikoninik, BCA), kromatografi
lapisan nipis (TLC) dan kromatografi cecair berprestasi tinggi-penyejatan
penyerakan cahaya (HPLC-ELSD). Pengekstrakan MBIE mengandungi kandungan
oligosakarida dan protein yang lebih tinggi iaitu (0.26 mg/mL dan
1.8 mg/mL) berbanding dengan pengekstrakan C18 (0.11 mg/mL dan 0.2
mg/mL). Analisis TLC (butanol: etanol: air = 6: 3: 1 dan 5: 4: 1)
menunjukkan kehadiran fOS dalam kedua-dua ekstrak MBIE dan C18 berdasarkan
tompok aktif orsinol (tidak aktif-UV). Puncak yang sama hadir dalam
kromatogram HPLC-ELSD untuk kedua-dua kaedah pengekstrakan dengan
MBIE menunjukkan kelimpahan yang lebih tinggi. Analisis unit glikan
(GU) terhadap data HPLC-ELSD piawai dekstran menunjukkan struktur
oligosakarida yang paling besar dikesan hanya di/trisakarida. Berdasarkan
keputusan yang diperoleh, pengekstrakan MBIE merupakan teknik pengekstrakan
karbohidrat yang lebih sesuai berbanding dengan pengekstrakan C18
untuk kajian profil dan fungsi fOS.
Kata
kunci: Glikan; HPLC-ELSD; Oligosakarida bebas (fOS); Saccharomyces cerevisiae; TLC
REFERENCES
Alonzi, D.S., Su, Y.H. & Butters, T.D. 2011. Urinary glycan markers for
disease. Biochemical Society Transactions 39: 393-398.
Alonzi,
D.S., Neville, D.C.A., Lachmann, R.H., Dwek, R.A. & Butters, T.D. 2008.
Glucosylated free oligosaccharides are biomarkers of endoplasmic-reticulum
alpha-glucosidase inhibition. Biochemical Journal 409:
571-580.
Chantret, I., Frenoy, J.P.
& Moore, S.E.H. 2003. Free-oligosaccharide control in the yeast Saccharomyces
cerevisiae: Roles for peptide: N-glycanase (Png1p) and vacuolar
mannosidase (Ams1p). Biochemical Journal 373: 901-908.
Davids, M., Kane, M.S., Wolfe, L.A., Toro, C., Tifft, C.J., Adams, D., Li,
X., Raihan, M.A., He, M., Gahl, W.A., Boerkoel, C.F. & Malicdan,
M.C.V. 2019. Glycomics in rare diseases: From diagnosis to mechanism.
Translational Research 206: 5-17.
Glawar,
A.F.G., Best, D., Ayers, B.J., Miyauchi, S., Nakagawa, S., Aguilar-Moncayo, M.,
García Fernández, J.M., Ortiz Mellet, C., Crabtree, E.V., Butters, T.D.,
Wilson, F.X., Kato, A. & Fleet, G.W.J. 2012. Scalable syntheses of
both enantiomers of DNJNAc and DGJNAc from glucuronolactone: The effect of N-alkylation
on hexosaminidase inhibition. Chemistry European Journal 18: 9341-9359.
Harada,
Y., Buser, R., Ngwa, E.M., Hirayama, H., Aebi, M. & Suzuki, T. 2013.
Eukaryotic oligosaccharyltransferase generates free oligosaccharides during N-glycosylation. Journal Biological Chemistry 288: 32673-32684.
Higgins,
E. 2010. Carbohydrate analysis throughout the development of a protein
therapeutic. Glycoconjugate Journal 21:
211-225.
Helenius, A. & Aebi, M. 2004. Roles of N-linked
glycans in the endoplasmic reticulum. Annual Review of Biochemistry 73: 1019-1049.
Hirayama, H. 2018. Biology of free oligosaccharides: Function and
metabolism of free N-glycans in eukaryote. Trends in Glycoscience and Glycotechnology 30: E161-E167.
Hirayama, H., Matsuda, T., Tsuchiya, Y., Oka, R.,
Seino, J., Huang, C., Nakajima, K., Noda, Y., Scichino, Y., Iwasaki, S. &
Suzuki, T. 2019. Free glycans derived from O-mannosylated
glycoproteins suggest the presence of an O-glycoprotein degradation
pathway in yeast. Journal of Biological
Chemistry 294(44): 15900-15911.
Hirayama, H., Seino, J., Kitajima, T., Jigami, Y. & Suzuki, T.
2010. Free oligosaccharides
to monitor glycoprotein endoplasmic reticulum-associated degradation in Saccharomyces
cerevisiae. Journal of Biological Chemistry 285:
12390-12404.
Homan, K., Hanamatsu, H., Furukawa, J.I., Okada, K., Yokota, I., Onodera,
T. & Iwasaki, N. 2019. Alteration of the total cellular glycome during late
differentiation of chondrocytes. International
Journal of Molecular Sciences 20: 1-16.
Huang, R., Cathey, S., Pollard, L. & Wood, T. 2018. UPLC-MS/MS analysis
of urinary free oligosaccharides for lysosomal storage diseases: Diagnosis and
potential treatment monitoring. Clinical
Chemistry 64: 1772-1779.
Jalaludin, I., Sudin,
A.H., Said, I.H., Azizan, K.A., Baharum, S.N., Murad, A.M.A., Bakar, F.D.B.,
Mahadi, N.M., Wormald, M.R., Alonzi, D.S. & Mackeen, M.M. 2017.
Fluorescence and evaporative light scattering HPLC profiling of intracellular
asparagine (N)-linked oligosaccharides from Saccharomyces cerevisiae using the Alg8 mutant. Malaysian Journal of Analytical Sciences 21:
1210-1218.
Karav, S., Casaburi, G., Arslan, A., Kaplan, M., Sucu, B. & Frese, S.
2019. N-glycans from human milk
glycoproteins are selectively released by an infant gut symbiont in vivo. Journal of Functional Foods 61: 1-6.
Lin, C.H., Kuo, C.W.,
Jarvis, D.L. & Khoo, K.H. 2014. Facile removal of high mannose structures
prior to extracting complex type N-glycans
from de-N-glycosylated peptides
retained by C18 solid phase to allow more efficient glycomic mapping. Proteomics 14: 87-92.
Liu, J., Jia, Y., Yang, Y., Chen, Q., Sun, L., Song, S., Huang, L. &
Wang, Z. 2019. Mass spectrometry analysis of changes in human milk N/O-glycopatterns
at different lactation stages. Journal of
Agricultural and Food Chemistry 67: 10702-10712.
Mackeen, M.M., Almond, A., Deschamps, M.,
Cumpstey, I., Fairbanks, A.J., Tsang, C., Rudd, P.M., Butters, T.D., Dwek, R.A.
& Wormald, M.R. 2009. The conformational properties of the Glc3Man
unit suggest conformational biasing within the chaperone-assisted glycoprotein
folding pathway. Journal of Molecular Biology 387: 335-347.
Masuko, T.,
Minami, A., Iwasaki, N., Majima, T., Nishimura, S.I. & Lee, Y.C. 2005.
Carbohydrate analysis by a phenol-sulfuric acid method in microplate
format. Analytical Biochemistry 339: 69-72.
Mellor, H.,
Neville, D.C.A., Harvey, D.J., Platt, F.M., Dwek, R.A. & Butter, T.D. 2004.
Cellular effects of deoxynojirimycin analogues: Inhibition of N-linked oligosaccharide processing and generation
of free glucosylated oligosaccharides. Biochemical
Journal 381: 867-875.
Miller, J.L., Tyrrell, B.E. & Zitzmann, N. 2018. Mechanisms of
antiviral activity of iminosugars against dengue virus. Advances in Experimental Medicine and Biology 1062: 277-301.
Neville,
D.C.A., Coquard, V., Priestman, D.A., te Vruchte, D.J.M., Sillence, D.J., Dwek,
R.A., Platt, F.M. & Butters, T.D. 2004. Analysis of fluorescently labelled
glycosphingolipid-derived oligosaccharides following ceramide glycanase
digestion and anthranilic acid labeling. Analytical Biochemistry 331: 275-282.
Nothaft, H., Liu, X., Li, J. & Szymanski, C.M. 2010. Campylobacter jejuni free
oligosaccharides function and fate. Virulence 1: 546-550.
Rawlings, A.J., Lomas, H., Pilling, A.W., Lee, M.J.R., Alonzi, D.S.,
Rountree, J.S.S., Jenkinson, S.F., Fleet, G.W.J., Dwek, R.A., Jones, J.H. &
Butters, T.D. 2009. Synthesis and biological characterisation of novel N-alkyl-deoxynojirimycin glucosidase
inhibitors. ChemBioChem 10:
1101-1105.
Roth,
J., Zuber, C., Park, S., Jang, I., Lee, Y., Kysela, K.G., Forum, V.L.,
Santimaria, R., Guhl, B. & Cho, J.W. 2010. Protein N-glycosylation, protein folding, and protein quality control. Molecules and Cells 30: 497-506.
Schoel, B., Welzel, M. & Kaufmann, S.H.E.
1995. Quantification of protein in dilute and complex samples:
Modification of the bicinchoninic acid assay. Journal of Biochemical
and Biophysical Methods 30: 199-206.
Shenkman, M., Ron, E., Yehuda, R., Benyair, R., Khalaila, I. &
Lederkremer, G.Z. 2018. Mannosidase
activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein
substrates. Communications Biology 1:
1-11.
Verostek, M.F., Lubowski, C. & Trimble, R.B. 2000. Selective organic
precipitation/extraction of released N-glycans following large-scale
enzymatic deglycosylation of glycoproteins. Analytical Biochemistry 278:
111-122.
Zhang,
Q., Li, H., Feng, X., Liu, B.F. & Liu, X. 2014. Purification of derivatised oligosaccharides by solid phase extraction
for glycomic analysis. PLoS ONE 9:
1-10.
*Corresponding author; email:
mukram.mackeen@ukm.edu.my
|