Sains Malaysiana 49(7)(2020): 1491-1498

http://dx.doi.org/10.17576/jsm-2020-4907-02

 

Frictional Properties of the Wax Coverings in Nepenthes alata Slippery Zone: Results from AFM Scanning

(Sifat Geseran Penutup Lilin di Zon Licin Nepenthes alata: Hasil daripada Pengimbasan AFM)

 

LIXIN WANG*, SHUOYAN ZHANG, LINLIN ZHANG & SHANSHAN LI

 

School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People’s Republic of China

 

Received: 8 April 2019/Accepted: 13 March 2020

 

ABSTRACT

Slippery zone of Nepenthes alata presents anisotropic friction behaviors depending on its evolved structures. Studies have demonstrated the contribution of lunate cells, but the role of wax coverings has not been specially investigated. In this paper, we showed findings obtained from AFM scanning and SEM observation on characterizing the frictional properties of wax coverings. Friction data generated by the AFM cantilever on wax coverings along downward and upward directions were different. The difference was insignificant (2.56%) when applying the load force of 300 nN, but increased (4.83-8.40%) when applying the load force of 500-1500 nN. The scanned wax coverings showed no detectable damage when applying the load force of 300 nN, whereas observable damage was presented when the load force exceeded 500 nN. When the load force increased to 1500 nN, the wax coverings were destroyed completely. The results suggest the wax coverings depend on their surface morphology and structural characteristic to generate different frictional properties in different directions, but the difference was inconspicuous to declare the surface anisotropy. This study is helpful for further understanding the anisotropic properties of slippery zone, and motivates the slippery zone to be a bionic prototype for designing anisotropic surfaces.

Keywords: Biotribology; frictional properties; slippery zone; surface anisotropy; wax coverings

 

ABSTRAK

Zon licin Nepenthes alata menunjukkan tingkah laku geseran anisotropik bergantung pada strukturnya yang berkembang. Kajian telah menunjukkan sumbangan sel-sel lunat, tetapi peranan penutup lilin belum dikaji secara khusus. Dalam makalah ini, kami menunjukkan penemuan yang diperoleh daripada pengimbasan AFM dan pemerhatian SEM mengenai ciri sifat geseran penutup lilin. Data geseran yang dihasilkan oleh julur AFM pada penutup lilin pada arah bawah dan atas adalah berbeza. Perbezaannya tidak bererti (2.56%) apabila menggunakan daya beban 300 nN, tetapi meningkat (4.83-8.40%) ketika menggunakan daya beban 500-1500 nN. Penutup lilin yang diimbas tidak menunjukkan kerosakan boleh kesan ketika menerapkan daya beban 300 nN, sedangkan kerosakan boleh kesan ditunjukkan ketika daya beban melebihi 500 nN. Apabila daya beban meningkat kepada 1500 nN, penutup lilin hancur sepenuhnya. Keputusan kajian menunjukkan penutup lilin bergantung pada morfologi permukaan dan ciri strukturnya untuk menghasilkan sifat geseran yang berlainan dalam arah yang berbeza, tetapi perbezaannya tidak jelas untuk menyatakan anisotropi permukaan. Kajian ini berguna untuk lebih memahami sifat anisotropik zon licin, dan mendorong zon licin untuk menjadi prototip bionik bagi merancang permukaan anisotropik.

Kata kunci: Anisotropi permukaan; biotribologi; penutup lilin; sifat geseran; zon licin

 

REFERENCES

Bauer, U., Willmes, C. & Federle, W. 2009. Effect of pitcher age on trapping efficiency and natural prey capture in carnivorous Nepenthes rafflesiana plants. Ann. Bot. 103(8): 1219-1226.

Benz, M.J., Gorb, E.V. & Gorb, S.N. 2012. Diversity of the slippery zone microstructure in pitchers of nine carnivorous Nepenthes taxa. Arthropod-Plant Inte. 6(1): 147-158.

Bobisut, O. 1910. Über den funktionswechsel der spaltöffnungen in der gleitzone der Nepenthes-kannen, Akad Wiss, Wien Sitzungsber, Math-Naturwiss. Kl. Abt. 1(1): 3-10.

Bonn, H.F. & Federle, W. 2004. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc. Natl. Acad. Sci. USA. 101: 14138-14143.

Chen, H.W., Zhang, L.X., Zhang, P.F., Zhang, D.Y., Han, Z.W. & Jiang, L. 2017. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of Nepenthes alata. Small 13(4): 1670-1676.

Chen, H.W., Zhang, P.F., Zhang, L.W., Liu, H.L., Jiang, Y., Zhang, D.Y., Han, Z.W. & Jiang, L. 2016. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532(7597): 85-89.

Ellison, A.M. & Gotelli, N.J. 2001. Evolutionary ecology of carnivorous plants. Trends Ecol. Evol. 16(11): 623-629.

Ellison, A.M. & Gotelli, N.J. 2009. Energetics and the evolution of carnivorous plants-Darwin's most wonderful plants in the world. J. Exp. Bot. 60(1): 19-42.

Gaume, L. & Giusto, B.D. 2009. Adaptive significance and ontogenetic variability of the waxy zone in Nepenthes rafflesiana. Ann. Bot. 104(7): 1281-1291.

Gaume, L., Perret, P., Gorb, E., Gorb, S., Labat, J.J. & Rowe, N. 2004. How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants. Arth. Struct. Dev. 33(1): 103-111.

Gaume, L., Gorb, S. & Rowe, N. 2002. Function of epidermal surfaces in the trapping efficiency of Nepenthes alata pitchers. New Phytol. 156(3): 479-489.

Gorb, E.V. & Gorb, S.N. 2011. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment. Beilstein. J. Nanotechnol. 2(1): 302-310.

Gorb, E. & Gorb, S. 2006. Physicochemical properties of functional surface in pitchers of the carnivorous plant Nepenthes alata blanco (Nepenthaceae). Plant Biol. 8(6): 841-848.

Gorb, E., Haas, K., Henrich, A., Enders, S., Barbakadze, N. & Gorb, S. 2005. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment. J. Exp. Biol. 208(24): 4651-4662.

Juniper, B.E. & Burras, J.K. 1962. How pitcher plant trap insects. New Sci. 269(1): 75-77.

Knoll, F. 1914. Über die ursache des ausgleitens der insektenbeine an wachsbedeckten pflanzenteilen. Jahrb. Wiss. Bot. 54(12): 448-497.

Koch, K., Bhushan, B. & Barthlott, W. 2009. Multifunctional surface structures of plants: An inspiration for biomimetics. Prog. Mater. Sci. 54(2): 137-178.

Moran, J.A. 1996. Pitcher dimorphism, prey composition and the mechanisms of prey attraction in the pitcher plant Nepenthes rafflesiana in Borneo. J. Ecol. 84(4): 515-525.

Moran, J.A. & Clarke, C.M. 2010. The carnivorous syndrome in Nepenthes pitcher plants: Current state of knowledge and potential future directions. Plant Signal. Behav. 5(6): 644-648.

Moran, J.A., Booth, W.E. & Charles, J.K. 1999. Aspects of pitcher morphology and spectral characteristics of six Bornean Nepenthes pitcher plant species: Implications for prey capture. Ann. Bot. 83(5): 521-528.

Page, O.T. & Lennon, K.A. 1999. Structure and development of the pitchers from the carnivorous plant Nepenthes alata (Nepenthaceae). Am. J. Bot. 86(10): 1382-1390.

Pant, D.D. & Bhatnagar, S. 1977. Morphological studies in Nepenthes (Nepenthaceae). Phytomorphology 27(1): 13-34.

Riedel, M., Eichner, A. & Jetter, R. 2003. Slippery surfaces of carnivorous plants: Composition of epicuticular wax crystals in Nepenthes alata Blanco pitchers. Planta 218(1): 87-97.

Riedel, M., Eichner, A., Meimberg, H. & Jetter, R. 2007. Chemical composition of epicuticular wax crystals on the slippery zone in pitchers of five Nepenthes species and hybrids. Planta 225(6): 1517-1534.

Scholz, I., Bückins, M., Dolge, L., Erlinghagen, T., Weth, A., Hischen, F., Mayer, J., Hoffmann, S., Riederer, M., Riedel, M. & Baumgartner, W. 2010. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness. J. Exp. Biol. 213(7): 1115-1125.

Thornham, D.G., Smith, J.M., Grafe, T.U. & Federle, W. 2012. Setting the trap: Cleaning behavior of Camponotus schmitzi ants increases long-term capture efficiency of their pitcher plant host Nepenthes bicalcarata. Funct. Ecol. 26(1): 11-19.

Wang, L.X. & Zhou, Q. 2016. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid. Sci. Rep. 6: 19907.

Wang, L.X. & Zhou, Q. 2014. Nepenthes pitchers: Surface structure, physical property, anti-attachment function and potential application in mechanical controlling plague locust. Chin. Sci. Bull. 59(21): 2513-2523.

Wang, L.X. & Zhou, Q. 2011. Friction force of locust Locusta migratoria manilensis (Orthoptera, Locustidae) on slippery zones surface of pitchers from four Nepenthes species. Tribol. Lett. 44: 345-353.

Wang, L.X. & Zhou, Q. 2010. Numerical characterization of surface structures of slippery zone in Nepenthes alata pitchers and its mechanism of reducing locust’s attachment force. Adv. Nat. Sci. 2(3): 152-160.

Wang, L.X., Dong, S.Y. & Zhou, Q. 2016. Slippery surface of Nepenthes alata pitcher: The role of lunate cell and wax crystal in restricting attachment ability of ant Camponotus japonicus Mayr. J. Bionic. Eng. 13(3): 373-387.

Wang, L.X., Zhou, Q., Zheng, Y.J. & Xu, S.Y. 2009. Composite structure and properties of pitcher surface of carnivorous plant Nepenthes and its influence on insect attachment system. Prog. Nat. Sci. 19(12): 1657-1664.

Wang, Z.B., Heng, L.P. & Jiang, L. 2018a. Effect of lubricant viscosity on the self-healing properties and electrically driven sliding of droplets on anisotropic slippery surfaces. J. Mater. Chem. A. 6(8): 3414-3421.

Wang, Z.B., Liu, Y., Guo, P., Heng, L.P. & Jiang, L. 2018b. Photoelectric synergetic responsive slippery surfaces based on tailored anisotropic films generated by interfacial directional freezing. Adv. Funct. Mater. 28: 1801310.

Wong, T.S., Kang, S.H., Tang, S.K.Y., Smythe, E.J., Hatton, B., Grinthal, A. & Aizenberg, J. 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477(7365): 443-447.

Zhang, P.F., Chen, H.W. & Zhang, D.Y. 2015. Investigation of the anisotropic morphology-induced effects of the slippery zone in pitchers of Nepenthes alata. J. Bionic Eng. 12(1): 79-87.

 

*Corresponding author; email: wanglx@hebust.edu.cn

   

 

 

previous