Sains
Malaysiana 49(7)(2020): 1499-1508
http://dx.doi.org/10.17576/jsm-2020-4907-03
Effect
of Abscisic Acid on Growth and Physiology of Arabica Coffee Seedlings under
Water Deficit Condition
(Kesan
Asid Absisik ke atas Pertumbuhan dan Fisiologi Anak Benih Kopi Arabica dalam
Keadaan Kekurangan Air)
NGOC-THANG VU1,
JONG-MAN PARK2, IL-SOEP KIM2,
ANH-TUAN TRAN1 &
DONG-CHEOL JANG*2
1Faculty of Agronomy, Vietnam National University of Agriculture,
Hanoi, Vietnam
2Department of
Horticulture, Kangwon National University, Chuncheon 200-701, Korea
Received: 15 September 2019/Accepted: 13 March 2020
ABSTRACT
In this study, the effect of abscisic acid (ABA) on growth and
physiology of Arabica coffee seedlings under water deficit condition was
investigated. To examine the effect of ABA concentration on growth and physiology, six ABA concentrations (0, 10, 50, 100,
150, and 200 mgL-1) were applied by spraying once a day for three
days. Additionally, the effect of ABA on physiology of Arabica coffee seedlings under
water deficit condition was examined by using two concentrations (50 and 100 mgL-1)
compared to non-ABA (0 mgL-1). Foliar application of ABA decreased
the growth traits of coffee seedlings in all the ABA concentrations. However, no statically
significant difference was observed among the 0, 10, 50, and 100 mgL-1 treatments
with growth traits except for the leaf area. Foliar application of ABA
decreased the quantum efficiency of photosystem II (Fv/Fm) of Arabica coffee
seedlings in watering condition. However, there was no significant difference
between 0 (control) and 10 mgL-1 of ABA or 50 and 100 mgL-1 or
150 and 200 mgL-1 of ABA treatment with the Fv/Fm. The application of ABA enhanced drought tolerance of coffee seedlings by increasing the leaf chlorophyll content, Fv/Fm and relative water content in
the leaf and reducing the relative ion leakage in the Arabica coffee seedlings.
The application of ABA increased the relative water content in the soil and
delayed the starting time of wilting point under water deficit condition.
Keywords: Abscisic acid; coffee; growth; physiology; water stress
ABSTRAK
Dalam
kajian ini, kesan asid absisik (ABA) terhadap pertumbuhan dan fisiologi anak
benih kopi Arabica dalam keadaan kekurangan air telah dikaji. Bagi mengkaji
kesan kepekatan ABA terhadap pertumbuhan dan fisiologi anak benih kopi ini,
enam kepekatan ABA (0, 10, 50, 100, 150 dan 200 mgL-1) telah
digunakan dengan penyemburan sekali sehari selama tiga hari. Selain itu, kesan
ABA terhadap fisiologi anak benih kopi dalam keadaan kekurangan air telah
dikaji menggunakan dua kepekatan (50 dan 100 mgL-1) dan dibandingkan
dengan benih tiada-ABA (0 mgL-1). Semburan daun ABA telah
mengurangkan sifat pertumbuhan anak benih kopi pada semua kepekatan ABA. Walau
bagaimanapun, tidak terdapat perbezaan yang signifikan secara statistik pada
ciri pertumbuhan benih antara rawatan ABA 0, 10, 50 dan 100 mgL-1 kecuali pada kawasan daun. Semburan daun ABA menurunkan kecekapan kuantum
fotosistem II (Fv / Fm) benih kopi Arabica yang diairkan. Walau bagaimanapun,
tidak ada perbezaan yang signifikan antara kepekatan rawatan ABA 0 mgL-1 (kawalan) dan 10 mgL-1 atau 50 dan 100 mgL-1 atau 150 dan
200 mgL-1 dengan Fv/Fm. Penggunaan ABA telah meningkatkan ketahanan
anak benih kopi terhadap kekeringan dengan meningkatkan kandungan klorofil,
Fv/Fm dan kandungan air relatif di dalam daun, serta mengurangkan kebocoran ion
relatif benih kopi Arabica. Penggunaan ABA juga telah meningkatkan kandungan
air relatif di dalam tanah dan melambatkan waktu mula titik layu dalam keadaan
kekurangan air.
Kata kunci: Asid absisik; fisiologi; ketegasan
air; kopi; pertumbuhan
REFERENCES
Agarwal, S., Sairam, R.K., Srivatava,
G.C., Tyagi, A. & Meena, R.C. 2005. Role of ABA, salicylic acid, calcium and
hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science 169(3): 559-570.
Alves, A.A.C. & Setter, T.L. 2000.
Response of cassava to water deficit: Leaf area growth and abscisic acid. Crop Science 40(1): 131-137.
Anbarasi, G., Bhagavathi, G., Vignesh,
R., Srinivasan, M. & Somasundaram, S.T. 2015. Effect of exogenous abscisic
acid on growth and biochemical changes in the halophyte Suaeda maritima. Journal of
Microbiology, Biotechnology and Food Science 4(5): 442-447.
Ashraf, M. 2010. Inducing drought
tolerance in plants: Some recent advances. Biotechnology
Advances 28: 169-183.
Bakhsh, I., Awan, I., Sadiq, M.,
Niamatullah, M., Zaman, K.U. & Aftab, M. 2011. Effect of plant growth
regulator application at different growth stages on the economical yield
potential of coarse rice (Oryza sativa L.). Journal of Animal and Plant Sciences 21(3): 612-616.
Borel, C.,
Simonneau, T., This, D. & Tardieu, F. 1997. Stomatal
conductance and ABA concentration in the xylem sap of barley lines of
contrasting genetic origins. Australian
Journal Plant Physiology 24(5): 607-615.
Carrow, R.N. 1996. Drought avoidance
characteristics of diverse tall fescue cultivars. Crop Science 36(2): 371-377.
Cousson, A. 2009. Involvement of
phospholipase C-independent calcium-mediated abscisic acid signaling during Arabidopsis response to drought. Biologia Plantarum 53(1): 53-62.
DaMatta, F.M. & Ramalho, J.D.C.
2006. Impacts of drought and temperature stress on coffee physiology and
production: A review. Brazilian Journal
Plant of Physiology 18(1): 55-81.
Farooq, U. & Bano, A. 2006.
Effects of abscisic acid and chlorocholine chloride on nodulation and
biochemical content of Vigna radiata L. under water stress. Pakistan Journal
Botany 38(5): 1511-1518.
Finkelstein, R.R., Gampala, S.S.L.
& Rock, C.D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14: 15-45.
Franks, P.J. & Farquhar, G.D.
2001. The effect of exogenous abscisic acid on stomatal development, stomatal
mechanics, and leaf gas exchange in Tradescantia
virginiana. Plant Physiology 125(2): 935-942.
Hala, E.M. & Ghada, S.M.I. 2009.
The role of abscisic acid in the response of two different wheat varieties to
water deficit. Zeitschrift fur
Naturforsch C 64(1-2): 77-84.
Hoagland, D.R. & Arnon, D.I. 1950.
The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347: 1-32.
Jiang, Y. & Huang, B. 2002.
Protein alterations in tall fescue in response to drought stress and abscisic
acid. Crop Science 42(1): 202-207.
Larkindale, J. & Knight, M.K.
2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium abscisic
acid, ethylene, and salicylic acid. Plant
Physiology 128(2): 682-695.
Leung, J. & Giraudat,
J. 1998. Abscisic acid signal transduction. Annual Review Plant Physiology and Plant Molecular Biology 49:
199-222.
Li, J., Wang, X.Q., Watson, M.B. &
Assmann, S.M. 2000. Regulation of abscisic acid-induced stomatal closure and
anion channels by guard cell AAPK kinase. Science 287(5451): 300-303.
Li, X.J., Yang, M.F., Chen, H., Qu,
L.Q., Chen, F. & Shen, A.H. 2010. Abscisic acid pretreatment enhances salt
tolerance of rice seedlings: Proteomic evidence. Biochimica et Biophysica Acta 1804(4): 929-940.
Ludewig, M., Dorffling, K. &
Seifert, H. 1988. Abscisic acid and water transport in sunflowers. Planta 175(3): 325-333.
Lu, G.H., Ren, D.L., Wang, X.Q., Wu,
J.K. & Zhao, M.S. 2010. Evaluation on drought tolerance of maize hybrids in
China. Journal of Maize Sciences 2010(3): 20-24.
Munns, R. & Cramer, G.R. 1996. Is
coordination of leaf and root growth mediated by abscisic acid? Opinion. Plant and Soil 185(1): 33-49.
Pinheiro, H.A., DaMatta, F.M., Chaves,
A.R.M., Loureiro, M.E. & Ducatti, C. 2005. Drought tolerance is associated
with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany 96(1): 101-108.
Planes, M.D., Ninoles, R., Rubio, L.,
Bissoli, G., Bueso, E., Garcia-Sanchez, M.J., Alejandro, S., Gonzalez-Guzman,
M., Hedrich, R., Rodriguez, P.L., Fernandez, J.A. & Serrano, R. 2015. A
mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on
inhibition of plasma membrane H+-ATPase and decreased cytosolic pH,
K+, and anions. Journal of
Experimental Botany 66(3): 813-825.
Pospisilova, J.,
Synkova, H., Haisel, D. & Batkova, P. 2009. Effect
of abscisic acid on photosynthetic parameters during ex vitro transfer
of micro propagated tobacco plantlets. Boilogia
Plantarum 53(1): 11-20.
Pospısilova, J., Vagner, M.,
Malbeck, J., Travnıckova, A. & Batkova, P. 2005. Interactions between
abscisic acid and cytokinins during water stress and subsequent rehydration. Boilogia Plantarum 49(4): 533-540.
Rajasekaran, L.R. & Blake, T.J.
1999. New plant growth regulators protect photosynthesis and enhance growth
under drought of jack pine seedlings. Journal
of Plant Growth Regulation 18(4): 175-181.
Sewelam, N., Dowidar, S., Abo-Kassem,
E.A. & Sobhy, S. 2017. Study of the interactive effects of calcium and
abscisic acid on drought stressed Triticum
aestivum seedlings. Egyptian Journal
of Botany 57(7th International conference): 215-232.
Sharp, R.E., Wu, Y., Voetberg, G.S.,
Saab, I.N. & LeNoble, M.E. 1994. Confirmation that abscisic acid
accumulation is required for maize primary root elongation at low water
potentials. Journal of Experimental
Botany 45(Special issue): 1743-1751.
Taylor, I.B., Burbidge, A. &
Thompson, A.J. 2000. Control of abscisic acid synthesis. Journal of Experimental Botany 51(350): 1563-1574.
Vu, N.T., Kang, H.M.,
Kim, Y.S., Choi, K.Y. & Kim, I.S. 2015. Growth, physiology and abiotic
stress response to abscisic acid in tomato seedlings. Horticulture, Environment, and Biotechnology 56(3): 294-304.
Wang, S.H., Sui, X.L., Hu, L.P., Sun,
J.L., Wei, Y.X. & Zhang, Z.X. 2010. Effects of exogenous abscisic acid
pre-treatment of cucumber (Cucumis
sativus) seeds on seedling growth and water-stress tolerance. New Zealand Journal of Crop and
Horticultural Science 38(1): 7-18.
Waterland, N.L., Finer, J.J. &
Jones, M.L. 2010. Abscisic acid applications decrease stomatal conductance and
delay wilting in drought-stressed chrysanthemums. HortTechnology 20(5): 896-901.
Wintgens, J.N. 2004. Coffee: Growing, Processing, Sustainable Production. A Guidebook for
Growers, Processors, Traders, and Researchers. Weinhem: Wiley-VCH Verlag
GmbH & Co.
Zhang, J.H., Zhang, X.P. & Liang,
J.S. 1995. Exudation rate and hydraulic conductivity of maize roots are
enhanced by soil drying and abscisic acid treatment. New Phytologist 131(3): 329-336.
Zhao, M.G.,
Zhao, X., Wu, Y.X. & Zhang, L.X. 2007. Enhanced sensitivity to oxidative
stress in an Arabidopsis nitric oxide
synthase mutant. Journal of Plant
Physiology 164(6): 737-745.
*Corresponding author; email: jdc@kangwon.ac.kr
|