Sains Malaysiana 49(7)(2020): 1533-1542

http://dx.doi.org/10.17576/jsm-2020-4907-06

 

Effects of Humic Acids from Different Sources on Sodium and Micronutrient Levels in Corn Plants

(Kesan Asid Humik daripada Punca yang Berbeza ke atas Natrium dan Paras Mikronutrien dalam Tumbuhan Jagung)

 

AYHAN HORUZ*

 

Agriculture Faculty, Department of Soil Science and Plant Nutrition, Ondokuzmayıs University, Samsun, 55139, Turkey

 

Received: 10 May 2019/Accepted: 4 March 2020

 

ABSTRACT

The use of activated humic acids (HAs) in agricultural applications is a relatively recent development. Corn (Zea mays L.) is a major food and silage crop in Turkey and yields are reduced in calcareous soils by sodium (Na) toxicity and carbonate (CO3) induced deficiencies of some micronutrients. In this study, the effects of two HAs extracted using the wet-alkali technique and activated with nitrogen (N2) and oxygen (O2) gases, on the Na and micronutrient (iron (Fe), manganese (Mn), zinc (Zn), copper (Cu) and boron (B)) concentrations in the homogenised stems and leaves of corn plants were investigated. The experiment was conducted with a completely randomized design with factorial arrangement (2 HA types × 2 fertilisation regimes × 5 HA concentrations), with three repetitions, in a calcareous soil in pots in a greenhouse. The humic acid was applied at 100, 200, 400, and 800 mg/kg of soil before sowing the corn seed. The variance analysis showed that increasing HA levels decreased the Na concentration in the corn plants. The lowest plant Na concentrations were obtained with the addition of HA activated with N2 and O2 to both the fertilised and unfertilised treatments. The highest Zn and Cu uptakes, and Fe, Mn, and B uptakes, were associated with wet alkali extraction and gas activation, respectively. Overall, HA extracted with N2/O2 was more effective under unfertilised conditions and wet extracted HA was more effective under fertilised conditions.

Keywords: Corn; humic acids; microelements; sodium

 

ABSTRAK

Penggunaan asid humik diaktifkan (HAs) dalam aplikasi pertanian merupakan pembangunan terbaharu. Jagung (Zea mays L.) ialah makanan utama dan tanaman silaj di Turki dan penghasilannya telah berkurang dalam media tanah berkapur disebabkan oleh ketoksikan natrium (Na) dan karbonat (CO3) dengan kekurangan mikronutrien di dalam media tanah teraruh. Dalam kajian ini, kesan penggunaan dua HA yang diekstraks menggunakan teknik basah-alkali dan diaktif dengan gas N2 dan O2 telah dikaji ke atas kepekatan Na dan mikronutrien (besi (Fe), mangan (Mn), zink (Zn), tembaga (Cu) dan boron (B)) dalam batang dan daun tumbuhan jagung terhomogen. Reka bentuk uji kaji ini dijalankan sepenuhnya secara rawak dengan susunan faktorial (2 jenis HA × 2 regim persenyawaan × 5 kepekatan HA), dengan tiga ulangan, di dalam tanah berkapur di dalam pasu di rumah hijau. Asid humik diaplikasikan pada 100, 200, 400 dan 800 mg/kg tanah sebelum penyemaian benih jagung. Analisis varians menunjukkan bahawa peningkatan tahap HA akan menurunkan kepekatan Na dalam tanaman jagung. Kepekatan Na yang terendah di dalam tanaman telah diperoleh dengan penambahan HA yang diaktifkan dengan N2 dan O2 untuk kedua-dua rawatan yang telah disenyawakan dan tidak disenyawakan. Pengambilan tertinggi Zn dan Cu, serta pengambilan Fe, Mn dan B, masing-masing dikaitkan dengan pengekstrakan alkali basah dan pengaktifan gas. Secara keseluruhannya, HA yang diekstrak dengan N2/O2 lebih berkesan di bawah keadaan yang tidak tersenyawa dan HA yang diekstrak secara basah adalah lebih berkesan di bawah keadaan yang tersenyawa.

Kata kunci: Asid humik; jagung; mikrounsur; natrium

 

REFERENCES

Akıncı, Ş. 2011. Humic acids, plant growth and nutrient uptake. Journal of Science of Marmara University 23(1): 46‐56.

Andriesse, J.P. 1988. Nature and Management of Tropical Peat Soils. FAO Soils Bulletin No. 59. Rome: Food and Agriculture Organization of the United Nations in Roma.

Asri, F.Ö., Demirtaş, E.I. & Ari, N. 2016. The influence of foliar humic acid applications on nutrition status, yield and quality in open tomato growing. Mediterranean Agricultural Sciences 29(1): 21-25.

Baigorri, R., Fuentes, M., González-Gaitano, G., García-Mina, J.M., Almendros, G. & González-Vila, F.J. 2009. Complementary multianalytical approach to study the distinctive structural features of the main humic fractions in solution: Gray humic acid, brown humic acid, and fulvic acid. Journal of Agricultural and Food Chemistry 57(8): 3266-3272.

Bouyoucos, G.J. 1951. A recalibration of the hydrometer method for making mechanical analysis of soil. Agronomy Journal 43(9): 434-438.

Boyle, M., Frakenburger, W.T. & Stolyz, L.H. 1989. The influence of organic matter on soil aggregation and water infiltration. Journal of Production Agriculture 2(4): 290-299.

Butuzova, L., Krzton, A. & Bazarova, O. 1998. Structure and properties of humic acids obtained from thermo-oxidized brown coal. Fuel 77(6): 581-584.

Chen, Y., Clapp, C.E., Magen, H. & Cline, V.W. 1999. Stimulation of plant growth by humic substances: Effects on iron availability. In Understanding Humic Substances: Advanced Methods, Properties and Applications, edited by Ghabbour, E.A. & Davies, G. Cambridge: Royal Society of Chemistry. pp. 255-263.

Cheryl, M., Grossl, P. & Bugbee, B. 2001. Beneficial effects of humic acid on micronutrient availability to wheat. Soil Science Society of American Journal 65(6): 1744-1750.

Çelik, H., Katkat, A.V. & Turan, M.A. 2010. Effect of foliar-applied humic acid to dry weight and mineral nutrient uptake of maize under calcareous soil conditions. Communications in Soil Science and Plant Analysis 42(1): 29-38.

David, P.P., Nelson, P.V. & Sanders, D.C. 1994. A humic acid improves growth of tomato seedling in solution culture. Journal of Plant Nutrition 17(1): 173-184.

Denre, M., Ghanti, S. & Sarkar, K. 2014. Effect of humic acid application on accumulation of mineral nutrition and pungency in garlic (Allium sativum L.). International Journal of Biotechnology Research 5(2): 7-12.

Ekinci, M., Eringü, A., Dursun, A., Yıldırım, E., Turan, M., Karaman, M.R. & Arjumend, T. 2015. Growth, yield, and calcium and boron uptake of tomato (Lycopersicon esculentum L.) and cucumber (Cucumis sativus L.) as affected by calcium and boron humate application in greenhouse conditions. Turkish Journal of Agriculture and Forestry 39(5): 613-632.

Eyüpoğlu, F. 1998. Turkey’s Land Vermiculite. Soil Fertilizer Research Institute, No: 220. Ankara: General Publication of Institute.

Ferrara, G., Pacifigo, A., Simeone, P. & Ferrara, E. 2007. Preliminary study on the effects of foliar applications of humic acids on Italia table grape. XXXth World Congress of Vine and Wine: Budapest, Romania June. p. 165.

Fontenelli, J.V., Da Silva, T.J.A., Bonfim-Silva, E.M. & Freitas Sousa, H.H.E. 2016. Soil moisture maintenance methods in cultivation in a greenhouse. African Journal of Agricultural Research 11(5): 317-323.

Garcia-Mina, J.M., Antolin, M.C. & Sanchez- Diaz, M. 2004. Metal - humic complexes and plant micronutrient uptake. Plant and Soil 258(1): 57-68.

Gezgin, S. & Hamurcu, M. 2006. The importance of the nutrient element interaction and the interactions between boron wıth the other nutrıent elements in plant nutrition. Selcuk University, Journal of Agricultural Faculty 20(39): 24-31.

Ghabbour, E.A. & Davies, G. 2001. Humic Substances: Structures, Models and Functions. Cambridge: The Royal Society of Chemistry Publications.

Grewal, K.S., Buchan, G.D. & Tonkin, P.J. 1990. Estimation of field capacity and wilting point of some New Zealand soils from their saturation percentages. New Zealand Journal of Crop and Horticultural Science 18(4): 241-246.

Horuz, A., Korkmaz, A. & Karaman, M.R. 2013. Response of paddy soils to silicon fertilization. Tarım Bilimleri Dergisi 19(4): 268-280.

Jones, J.B.J. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. Boca Raton: CRC Press.

Kacar, B. 2009. Plant and Soil Chemical Analysis III. Soil Analysis. Nobel Publication No: 1387. p. 467.

Kacar, B. 1984. Plant Nutrition Practice Guide. Turkey: Agricultural Faculty Publications of Ankara University.

Kacar, B. & Katkat V. 2009. Plant Nutrition. Nobel Publications.

Kacar, B. & İnal, A. 2008. Plant Analysis. Stockholm: Nobel Press.

Khaled, K. & Fawy, A.H. 2011. Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil & Water Research 6(1): 21-29.

Labuschagne, P., Eicker, A. & Van Greuning, M. 1995. Casing mediums for Agaricus bisporus cultivation in South Africa: A preliminary report. Mushroom Science XIV, Science and Cultivation of Edible Fungi, Balkema Rotterdam 1: 339-334.

Lobartini, J.C., Orioli, G.A. & Tan, K.H. 1997. Characteristics of soil humic acid fractions separated by ultrafiltration. Communications in Soil Science and Plant Analysis 28(9-10): 787-796.

Manas, P., Bandopadhyay, P.K., Chakrovarty, A. & Bhattacharya, A. 2014. Effect of foliar application of humic acid, zinc, and boron on biochemical changes related to productivity of pungent (Capsivum annuum L.). African Journal of Plant Science 8(6): 320-335.

Manzoor, A., Khattak, R.A. & Dost, M. 2014. Humic acid and micronutrient effects on wheat yield and nutrients uptake in salt affected soils. International Journal of Agriculture and Biology 16(5): 991-995.

Masciandaro, G., Ceccanti, B., Ronchi, V., Benedicto, S. & Howard, L. 2002. Humic substances to reduce salt effect on plant germination and growth. Communications in Soil Science and Plant Analysis 33(3-4): 365-378.

Pettit, R.E. 2004. Organic Matter, Humus, Humate, Humic Acid, Fulvic Acid and Humin: Their Importance in Soil Fertility and Plant Health. www.humate.info/mainpage.html.

Roth, G., Undersander, D., Allen, M., Ford, S., Harrison, J. & Hunt, C. 1995. Corn Silage Production, Management, and Feeding. American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, Madison, WI.

Russo, R.O. & Berlyn, G.P. 1990. The use of organic biostimulants to help low input sustainable agriculture. Journal of Sustainable Agriculture 1(2): 19-42.

Saruhan, V., Kusvuran, A. & Babat, S. 2011a. The effect of different humic acid fertilization on yield and yield components performances of common millet (Panicum miliaceum L.). Scientific Research and Essays 6(3): 663-669.

Saruhan, V., Kuşvuran, A. & Kökten, K. 2011b. The effect of different replications of humic acid fertilization on yield performances of common vetch (Vicia sativa L.). African Journal of Biotechnology 10(29): 5587-5592.

Schnitzer, M. 1992. Significance of soil organic matter in soil formation, transport processes in soils and in the formation of soil structure. Soil Utilization and Soil Fertility 206(4): 63-81.

Sharif, M., Khattak, R. & Sarir, M.S. 2002. Effect of different levels of lignitic coal derived humic acid on growth of maize plants. Communications in Soil Science and Plant Analysis 33(19-20): 3567-3580.

Soil Survey Laboratory. 1992. Procedures for Collecting Soil Samples and Methods of Analysis for Soil Survey. Soil Survev. Invest. Rep. Washington D.C: US Government Printing Office.

Soil Survey Staff. 1993. Soil Survey Manuel. USDA Handbook (No. 18). Washington.

Sözüdoğru, S., Kütük, A.C., Yalçın, R. & Usta, S. 1996. Scientific Research and Examinations. Effect of humic acid on growth and nutrient uptake of bean plant. (No. 800). Ankara: Agricultural Faculty Publications.

Tan, K.G. 1998. Principles of Soil Chemistry. Boca Raton: CRC Press.

Tan, K.H. 2003. Humic Matter in Soil and Environment: Principles and Controversies. New York: CRC Press.

Tombacz, E. & Rice, J.A. 1999. Changes of colloidal state in aqueous systems of humic acids. In. Understanding Humic Subtances. Cambridge: Woodhead Publishing. pp. 69-78.

Turan, M. & Horuz, A. 2012. Basic principles of plant nutrition. In Plant Nutrition. Healthy Plant, Healthy Production. 1.

Turan, M. & Horuz, A. 2012. Bitki beslemenin temel ilkeleri. In Bitki Besleme (Plant Nutrition), edited Karaman, M.R. Ankara: Pelin Ofset Publication. pp: 123-347.

Yıldırım, E. 2007. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agriculturae Scandinavica Section B-Soil Plant Science 57(2): 182-186.

Yingei, W. 1988. HA resin treatment of copper and nickel. Haunjing Bashu 7: 21-22.

 

*Corresponding author; email: ayhanh@omu.edu.tr

 

 

 

 

 

previous