Sains Malaysiana 49(7)(2020): 1651-1662

http://dx.doi.org/10.17576/jsm-2020-4907-16

 

Foot Over Pronation Problem among Undergraduate Students: A Preliminary Study

(Masalah Lebihan Pergerakan Pronat Kaki dalam kalangan Pelajar Prasiswazah: Suatu Kajian Awal)

 

NUR SAIBAH GHANI1, NASRUL ANUAR ABD RAZAK1*, JULIANA USMAN1 & H. GHOLIZADEH2

 

1Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia

 

2The Okinawa Rehabilitation Institute, Canada

 

Received: 9 April 2019/Accepted: 22 March 2020

 

ABSTRACT

Over pronation is a dysfunctional movement where the foot has turned in excessively from its neutral line and can lead to misalignment of the foot and leg in humans. The purposes of this study are to investigate the ankle biomechanics behavior in individuals among the undergraduate students with over pronation foot and provide guidelines to help correct the foot deformities. 10 subjects with over pronated foot where volunteer but only 7 pass the selection test and divided into two group normal subjects (n=2) and over pronated subjects (n=5). Vicon motion analysis was used to observe and analyze the gait cycle and the ankle range of motion in individuals with over pronation. The study found that the ankle joint during the initial contact was below 5° for all subjects. Subject 2 shows the lowest ankle angle during initial contact while for mid stance phase, subject 3 shows the highest ankle angle which was 24.15° on left foot and 28.30° on right foot. From the ANOVA test, the p value for ankle joint angle was less than 0.05, which indicates that there was significant difference between all the subjects. The ankle angle depended on the muscle movement as the muscles and ligaments tried to stabilize and move the foot by controlling the angle to make sure the foot is in correct position and can move forward. As conclusion, there are significant differences for ankle behavior between normal and over pronated subjects, thus proper guideline for exercise or treatment can help to overcome this problem.

Keywords: Ankle joint; deformity; motion analysis; over pronation; range of motion

 

ABSTRAK

Lebihan pergerakan pronat adalah salah satu masalah kaki bergerak melebihi had yang ditetapkan daripada garisan neutralnya dan boleh menyebabkan ketidaksejajaran pada kaki manusia. Tujuan kajian ini adalah untuk mengkaji tingkah laku biomekanisme buku lali dalam kalangan pelajar-pelajar prasiswazah yang menghadapi masalah buku lali yang terlebih pronat dan memberi panduan untuk membetulkan kecacatan kaki. 10 individu yang menghadapi lebihan pergerakan pronat kaki telah sukarela ingin menyertai kajian ini, tetapi hanya 7 individu sahaja yang lulus dalam ujian pemilihan dan dibahagikan kepada dua kumpulan iaitu individu yang normal (n=2) dan individu yang mempunyai buku lali yang lebih pronat (n=5). Analisis pergerakan Vicon dijalankan untuk memerhati dan menganalisis kitaran gaya berjalan dan pergerakan pada sudut buku lali. Hasil kajian menunjukkan sudut buku lali semasa sentuhan awal adalah di bawah 5° untuk semua individu. Individu ke-2 menunjukkan sudut buku lali yang paling rendah semasa sentuhan awal untuk fasa pendirian pertengahan, individu ke-3 menunjukkan sudut buku lali yang paling tinggi iaitu 24.15° pada kaki kiri dan 28.30° pada kaki kanan. Melalui ujian statistik ANOVA, nilai p untuk sudut buku lali adalah kurang daripada 0.05 dan ini menunjukkan terdapat perbezaan yang ketara antara subjek kajian. Sudut buku lali bergantung kepada pergerakan otot kerana otot and ligamen cuba menstabilkan dan menggerakkan kaki dengan mengawal sudut bagi memastikan kaki berada dalam keadaan stabil dan boleh bergerak ke hadapan. Kesimpulannya, terdapat perbezaan yang ketara terhadap tingkah laku buku lali antara individu normal dan individu yang lebih pronat, dengan itu garis panduan yang betul untuk senaman atau rawatan boleh membantu untuk mengatasi masalah ini.

Kata kunci: Kajian pergerakan; nilai pergerakan sudut; penyakit; sudut buku lali; terlebih pronat

 

REFERENCES

Aguilar, M.B., Abián-Vicén, J., Halstead, J. & Gijon-Nogueron, G. 2016. Effectiveness of neuromuscular taping on pronated foot posture and walking plantar pressures in amateur runners. Journal of Science and Medicine in Sport 19(4): 348-353.

Alam, M.N., Garg, A., Munia, T.T.K., Fazel-Rezai, R. & Tavakolian, K. 2017. Vertical ground reaction force marker for Parkinson’s disease. PloS ONE 12(5): e0175951.

Bandholm, T., Boysen, L., Haugaard, S., Zebis, M.K. & Bencke, J. 2008. Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome. The Journal of Foot and Ankle Surgery 47(2): 89-95.

Banwell, H.A., Paris, M.E., Mackintosh, S. & Williams, C.M. 2018. Paediatric flexible flat foot: How are we measuring it and are we getting it right? A systematic review. Journal of Foot and Ankle Research 11(1): 21.

Bibrowicz, K., Szurmik, T., Michnik, R., Wodarski, P., Myśliwiec, A. & Mitas, A. 2018. Application of Zebris dynamometric platform and arch index in assessment of the longitudinal arch of the foot. Technology and Health Care 26(S2): 543-551.

Golightly, Y.M., Hannan, M.T., Dufour, A.B., Hillstrom, H.J. & Jordan, J.M. 2014. Foot disorders associated with overpronated and oversupinated foot function: The Johnston County osteoarthritis project. Foot & Ankle International 35(11): 1159-1165.

Hagen, M., Lemke, M. & Lahner, M. 2018. Deficits in subtalar pronation and supination proprioception in subjects with chronic ankle instability. Human Movement Science 57: 324-331.

Hajirezaei, B., Mirzaei, S. & Khezri, A. 2017. The relationship between flat feet and cavus foot with body mass index in girl students. International Journal of Applied Exercise Physiology 6(3): 15-22.

Hintermann, B. 1999. Biomechanics of the unstable ankle joint and clinical implications. Medicine and Science in Sports and Exercise 31(7 Suppl): S459-S469.

Kakihana, W., Torii, S., Akai, M., Nakazawa, K., Fukano, M. & Naito, K. 2005. Effect of a lateral wedge on joint moments during gait in subjects with recurrent ankle sprain. American Journal of Physical Medicine & Rehabilitation 84(11): 858-864.

Kluitenberg, B., Bredeweg, S.W., Zijlstra, S., Zijlstra, W. & Buist, I. 2012. Comparison of vertical ground reaction forces during overground and treadmill running. A validation study. BMC Musculoskeletal Disorders 13(1): 235.

Kosonen, J., Kulmala, J.P., Müller, E. & Avela, J. 2017. Effects of medially posted insoles on foot and lower limb mechanics across walking and running in overpronating men. Journal of Biomechanics 54: 58-63.

Koura, G.M., Elimy, D.A., Hamada, H.A., Fawaz, H.E., Elgendy, M.H. & Saab, I.M. 2017. Impact of foot pronation on postural stability: An observational study. Journal of Back and Musculoskeletal Rehabilitation 30(6): 1327-1332.

Krähenbühl, N., Horn-Lang, T., Hintermann, B. & Knupp, M. 2017. The subtalar joint: A complex mechanism. EFORT Open Reviews 2(7): 309-316.

Layton, R.B., Stewart, T.D., Harwood, P. & Messenger, N. 2018. Biomechanical analysis of walking gait when simulating the use of an Ilizarov external fixator. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 232(6): 628-636.

Lee, J.S., Kim, K.B., Jeong, J.O., Kwon, N.Y. & Jeong, S.M.J.A. 2015. Correlation of foot posture index with plantar pressure and radiographic measurements in pediatric flatfoot. Annals of Rehabilitation Medicine 39(1): 10-17.

Levinger, P., Murley, G.S., Barton, C.J., Cotchett, M.P., McSweeney, S.R. & Menz, H.B. 2010. A comparison of foot kinematics in people with normal-and flat-arched feet using the Oxford Foot Model. Gait & Posture 32(4): 519-523.

Mitchell, A., Dyson, R., Hale, T. & Abraham, C. 2008. Biomechanics of ankle instability. Part 1: Reaction time to simulated ankle sprain. Medicine and Science in Sports and Exercise 40(8): 1515-1521.

Redmond, A.C., Crane, Y.Z., Menz, H.B. 2008. Normative values for the foot posture index. Journal of Foot and Ankle Research  1(1): 6.

Ringleb, S.I., Dhakal, A., Anderson, C.D., Bawab, S. & Paranjape, R. 2011. Effects of lateral ligament sectioning on the stability of the ankle and subtalar joint. Journal of Orthopaedic Research 29(10): 1459-1464.

Riskowski, J.L., Dufour, A.B., Hagedorn, T.J., Hillstrom, H.J., Casey, V.A. & Hannan, M.T. 2013. Associations of foot posture and function to lower extremity pain: Results from a population‐based foot study. Arthritis Care & Research 65(11): 1804-1812.

Rome, K. & Brown, C. 2004. Randomized clinical trial into the impact of rigid foot orthoses on balance parameters in excessively pronated feet. Clinical Rehabilitation 18(6): 624-630.

Ryu, H.X. & Park, S. 2018. Estimation of unmeasured ground reaction force data based on the oscillatory characteristics of the center of mass during human walking. Journal of Biomechanics 71: 135-143.

Sabharwal, R. & Singh, S. 2017. Foot postural deviations in female Kathak dancers. International Journal of Physiotherapy 4(1): 38-43.

Shaliza Mohd Shariff, Thamilvaani Manaharan, Asma Ahmad Shariff & Amir Feisal Merican. 2017. Evaluation of foot arch in adult women: Comparison between five different footprint parameters. Sains Malaysiana 46(10): 1839-1848.

Shih, Y.F., Wen, Y.K. & Chen, W.Y. 2011. Application of wedged foot orthosis effectively reduces pain in runners with pronated foot: A randomized clinical study. Clinical Rehabilitation 25(10): 913-923.

Shultz, S.P., Song, J., Kraszewski, A.P., Hafer, J.F., Rao, S., Backus, S., Hillstrom, R.M. & Hillstrom, H.J. 2017. An investigation of structure, flexibility, and function variables that discriminate asymptomatic foot types. Journal of Applied Biomechanics 33(3): 203-210.

Suresh, K. & Chandrashekara, S. 2012. Sample size estimation and power analysis for clinical research studies. Journal of Human Reproductive Sciences 5(1): 7-13.

Wang, H. & Brown, S.R. 2017. The effects of total ankle replacement on ankle joint mechanics during walking. Journal of Sport and Health Science 6(3): 340-345.

Wikstrom, E.A. & McKeon, P.O. 2017. Predicting balance improvements following STARS treatments in chronic ankle instability participants. Journal of Science and Medicine in Sport 20(4): 356-361.

Willems, T., Witvrouw, E., Delbaere, K., De Cock, A. & De Clercq, D. 2005. Relationship between gait biomechanics and inversion sprains: A prospective study of risk factors. Gait & Posture 21(4): 379-387.

Wright, I.C., Neptune, R.R., Van Den Bogert, A.J. & Nigg, B.M. 2000. The effects of ankle compliance and flexibility on ankle sprains. Medicine and Science in Sports and Exercise 32(2): 260-265.

Xiao, J., Zhang, Y., Zhao, S. & Wang, H. 2017. Measuring the 3D motion space of the human ankle. Technology and Health Care 25(S1): 219-230.

Zang, X., Liu, X., Liu, Y., Iqbal, S. & Zhao, J. 2016. Influence of the swing ankle angle on walking stability for a passive dynamic walking robot with flat feet. Advances in Mechanical Engineering 8(3): 1-13.

 

*Corresponding author; email: nasrul.anuar@um.edu.my

 

 

 

 

previous