Sains Malaysiana
49(7)(2020): 1651-1662
http://dx.doi.org/10.17576/jsm-2020-4907-16
Foot Over
Pronation Problem among Undergraduate Students: A Preliminary Study
(Masalah Lebihan
Pergerakan Pronat Kaki dalam kalangan Pelajar Prasiswazah: Suatu Kajian Awal)
NUR
SAIBAH GHANI1, NASRUL ANUAR ABD RAZAK1*, JULIANA USMAN1 & H. GHOLIZADEH2
1Department of Biomedical Engineering, Faculty of Engineering, University
of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
2The Okinawa Rehabilitation Institute, Canada
Received: 9 April 2019/Accepted: 22 March 2020
ABSTRACT
Over pronation is a dysfunctional
movement where the foot has turned in excessively from its neutral line and can
lead to misalignment of the foot and leg in humans. The purposes of this study
are to investigate the ankle biomechanics behavior in individuals among the
undergraduate students with over pronation foot and provide guidelines to help
correct the foot deformities. 10 subjects with over pronated foot where
volunteer but only 7 pass the selection test and divided into two group normal
subjects (n=2) and over pronated subjects (n=5). Vicon motion analysis was used
to observe and analyze the gait cycle and the ankle range of motion in individuals
with over pronation. The study found that the ankle joint during the initial
contact was below 5° for all subjects. Subject 2 shows the lowest ankle angle
during initial contact while for mid stance phase, subject 3 shows the highest
ankle angle which was 24.15° on left foot and 28.30° on right foot. From the
ANOVA test, the p value for ankle joint angle was
less than 0.05, which indicates that there was significant difference between
all the subjects. The ankle angle depended on
the muscle movement as the muscles and ligaments tried to stabilize and move
the foot by controlling the angle to make sure the foot is in correct position
and can move forward. As conclusion, there are significant differences for
ankle behavior between normal and over pronated subjects, thus proper guideline
for exercise or treatment can help to overcome this problem.
Keywords: Ankle joint; deformity; motion analysis; over pronation; range of
motion
ABSTRAK
Lebihan pergerakan
pronat adalah salah satu masalah kaki bergerak melebihi had yang ditetapkan
daripada garisan neutralnya dan boleh menyebabkan ketidaksejajaran pada kaki
manusia. Tujuan kajian ini adalah untuk mengkaji tingkah laku biomekanisme buku
lali dalam kalangan pelajar-pelajar prasiswazah yang menghadapi masalah buku
lali yang terlebih pronat dan memberi panduan untuk membetulkan kecacatan
kaki. 10 individu yang menghadapi lebihan pergerakan pronat kaki telah
sukarela ingin menyertai kajian ini, tetapi hanya 7 individu sahaja yang lulus
dalam ujian pemilihan dan dibahagikan kepada dua kumpulan iaitu individu yang
normal (n=2) dan individu yang mempunyai buku lali yang lebih pronat (n=5).
Analisis pergerakan Vicon dijalankan untuk memerhati dan menganalisis kitaran
gaya berjalan dan pergerakan pada sudut buku lali. Hasil kajian menunjukkan
sudut buku lali semasa sentuhan awal adalah di bawah 5° untuk semua individu. Individu ke-2 menunjukkan sudut buku lali yang paling
rendah semasa sentuhan awal untuk fasa pendirian pertengahan, individu ke-3
menunjukkan sudut buku lali yang paling tinggi iaitu 24.15° pada kaki kiri dan 28.30° pada kaki
kanan. Melalui ujian statistik ANOVA, nilai p untuk sudut buku lali adalah
kurang daripada 0.05 dan ini menunjukkan terdapat perbezaan yang ketara antara
subjek kajian. Sudut buku lali bergantung kepada pergerakan otot kerana otot
and ligamen cuba menstabilkan dan menggerakkan kaki dengan mengawal sudut bagi
memastikan kaki berada dalam keadaan stabil dan boleh bergerak ke hadapan.
Kesimpulannya, terdapat perbezaan yang ketara terhadap tingkah laku buku lali
antara individu normal dan individu yang lebih pronat, dengan itu garis
panduan yang betul untuk senaman atau rawatan boleh membantu untuk mengatasi
masalah ini.
Kata kunci: Kajian pergerakan; nilai pergerakan sudut; penyakit; sudut buku
lali; terlebih pronat
REFERENCES
Aguilar, M.B., Abián-Vicén, J., Halstead, J. &
Gijon-Nogueron, G. 2016. Effectiveness of neuromuscular taping on pronated foot
posture and walking plantar pressures in amateur runners. Journal of Science and Medicine in Sport 19(4): 348-353.
Alam,
M.N., Garg, A., Munia, T.T.K., Fazel-Rezai, R. & Tavakolian, K. 2017.
Vertical ground reaction force marker for Parkinson’s disease. PloS ONE 12(5): e0175951.
Bandholm,
T., Boysen, L., Haugaard, S., Zebis, M.K. & Bencke, J. 2008. Foot medial
longitudinal-arch deformation during quiet standing and gait in subjects with
medial tibial stress syndrome. The
Journal of Foot and Ankle Surgery 47(2): 89-95.
Banwell,
H.A., Paris, M.E., Mackintosh, S. & Williams, C.M. 2018. Paediatric
flexible flat foot: How are we measuring it and are we getting it right? A
systematic review. Journal of Foot and
Ankle Research 11(1): 21.
Bibrowicz,
K., Szurmik, T., Michnik, R., Wodarski, P., Myśliwiec, A. & Mitas, A.
2018. Application of Zebris dynamometric platform and arch index in assessment
of the longitudinal arch of the foot. Technology
and Health Care 26(S2): 543-551.
Golightly,
Y.M., Hannan, M.T., Dufour, A.B., Hillstrom, H.J. & Jordan, J.M. 2014. Foot
disorders associated with overpronated and oversupinated foot function: The
Johnston County osteoarthritis project. Foot
& Ankle International 35(11): 1159-1165.
Hagen,
M., Lemke, M. & Lahner, M. 2018. Deficits in subtalar pronation and
supination proprioception in subjects with chronic ankle instability. Human Movement Science 57: 324-331.
Hajirezaei,
B., Mirzaei, S. & Khezri, A. 2017. The relationship between flat feet and
cavus foot with body mass index in girl students. International Journal of Applied Exercise Physiology 6(3): 15-22.
Hintermann,
B. 1999. Biomechanics of the unstable ankle joint and clinical implications. Medicine and Science in Sports and Exercise 31(7 Suppl): S459-S469.
Kakihana,
W., Torii, S., Akai, M., Nakazawa, K., Fukano, M. & Naito, K. 2005. Effect
of a lateral wedge on joint moments during gait in subjects with recurrent
ankle sprain. American Journal of
Physical Medicine & Rehabilitation 84(11): 858-864.
Kluitenberg,
B., Bredeweg, S.W., Zijlstra, S., Zijlstra, W. & Buist, I. 2012. Comparison
of vertical ground reaction forces during overground and treadmill running. A
validation study. BMC Musculoskeletal
Disorders 13(1): 235.
Kosonen,
J., Kulmala, J.P., Müller, E. & Avela, J. 2017. Effects of medially posted
insoles on foot and lower limb mechanics across walking and running in
overpronating men. Journal of
Biomechanics 54: 58-63.
Koura,
G.M., Elimy, D.A., Hamada, H.A., Fawaz, H.E., Elgendy, M.H. & Saab, I.M.
2017. Impact of foot pronation on postural stability: An observational study. Journal of Back and Musculoskeletal
Rehabilitation 30(6): 1327-1332.
Krähenbühl,
N., Horn-Lang, T., Hintermann, B. & Knupp, M. 2017. The subtalar joint: A
complex mechanism. EFORT Open Reviews 2(7): 309-316.
Layton,
R.B., Stewart, T.D., Harwood, P. & Messenger, N. 2018. Biomechanical
analysis of walking gait when simulating the use of an Ilizarov external
fixator. Proceedings of the Institution
of Mechanical Engineers, Part H: Journal of Engineering in Medicine 232(6):
628-636.
Lee,
J.S., Kim, K.B., Jeong, J.O., Kwon, N.Y. & Jeong, S.M.J.A. 2015.
Correlation of foot posture index with plantar pressure and radiographic
measurements in pediatric flatfoot. Annals
of Rehabilitation Medicine 39(1): 10-17.
Levinger,
P., Murley, G.S., Barton, C.J., Cotchett, M.P., McSweeney, S.R. & Menz,
H.B. 2010. A comparison of foot kinematics in people with normal-and
flat-arched feet using the Oxford Foot Model. Gait & Posture 32(4): 519-523.
Mitchell,
A., Dyson, R., Hale, T. & Abraham, C. 2008. Biomechanics of ankle
instability. Part 1: Reaction time to simulated ankle sprain. Medicine and Science in Sports and Exercise 40(8): 1515-1521.
Redmond,
A.C., Crane, Y.Z., Menz, H.B. 2008. Normative values for the foot posture index. Journal of Foot and Ankle Research 1(1): 6.
Ringleb,
S.I., Dhakal, A., Anderson, C.D., Bawab, S. & Paranjape, R. 2011. Effects
of lateral ligament sectioning on the stability of the ankle and subtalar
joint. Journal of Orthopaedic Research 29(10): 1459-1464.
Riskowski,
J.L., Dufour, A.B., Hagedorn, T.J., Hillstrom, H.J., Casey, V.A. & Hannan,
M.T. 2013. Associations of foot posture and function to lower extremity pain:
Results from a population‐based foot study. Arthritis Care & Research 65(11): 1804-1812.
Rome,
K. & Brown, C. 2004. Randomized clinical trial into the impact of rigid
foot orthoses on balance parameters in excessively pronated feet. Clinical Rehabilitation 18(6): 624-630.
Ryu,
H.X. & Park, S. 2018. Estimation of unmeasured ground reaction force data
based on the oscillatory characteristics of the center of mass during human
walking. Journal of Biomechanics 71:
135-143.
Sabharwal,
R. & Singh, S. 2017. Foot postural deviations in female Kathak dancers. International Journal of Physiotherapy 4(1): 38-43.
Shaliza
Mohd Shariff, Thamilvaani Manaharan, Asma Ahmad Shariff & Amir Feisal
Merican. 2017. Evaluation of foot arch in adult women: Comparison between five
different footprint parameters. Sains
Malaysiana 46(10): 1839-1848.
Shih,
Y.F., Wen, Y.K. & Chen, W.Y. 2011. Application of wedged foot orthosis
effectively reduces pain in runners with pronated foot: A randomized clinical
study. Clinical Rehabilitation 25(10): 913-923.
Shultz,
S.P., Song, J., Kraszewski, A.P., Hafer, J.F., Rao, S., Backus, S., Hillstrom,
R.M. & Hillstrom, H.J. 2017. An investigation of structure, flexibility,
and function variables that discriminate asymptomatic foot types. Journal of Applied Biomechanics 33(3):
203-210.
Suresh,
K. & Chandrashekara, S. 2012. Sample size estimation and power analysis for
clinical research studies. Journal of
Human Reproductive Sciences 5(1): 7-13.
Wang,
H. & Brown, S.R. 2017. The effects of total ankle replacement on ankle joint
mechanics during walking. Journal of
Sport and Health Science 6(3): 340-345.
Wikstrom,
E.A. & McKeon, P.O. 2017. Predicting balance improvements following STARS
treatments in chronic ankle instability participants. Journal of Science and Medicine in Sport 20(4): 356-361.
Willems,
T., Witvrouw, E., Delbaere, K., De Cock, A. & De Clercq, D. 2005.
Relationship between gait biomechanics and inversion sprains: A prospective
study of risk factors. Gait & Posture 21(4): 379-387.
Wright,
I.C., Neptune, R.R., Van Den Bogert, A.J. & Nigg, B.M. 2000. The effects of
ankle compliance and flexibility on ankle sprains. Medicine and Science in Sports and Exercise 32(2): 260-265.
Xiao,
J., Zhang, Y., Zhao, S. & Wang, H. 2017. Measuring the 3D motion space of
the human ankle. Technology and Health
Care 25(S1): 219-230.
Zang,
X., Liu, X., Liu, Y., Iqbal, S. & Zhao, J. 2016. Influence of the swing
ankle angle on walking stability for a passive dynamic walking robot with flat
feet. Advances in Mechanical Engineering 8(3): 1-13.
*Corresponding author; email: nasrul.anuar@um.edu.my
|