The Malaysian Journal of Analytical Sciences Vol 10 No 2 (2006): 261 – 268

 

 

SORPTION OF ARSENIC (V) BY TITANIUM OXIDE LOADED POLY(HYDROXAMIC ACID) RESIN

 

Haron M.J.*, Shiah L.L. and  Wan Yunus W.M.Z.

 

Department of C h e m i s t r y , Faculty of Science, Universiti Putra Malaysia,

43400 Serdang, Selangor, Malaysia

 

*Corresponding author: mdjelas@fsas.upm.edu.my

 

Abstract

The sorption process for removal of As(V) by titanium oxide-loaded poly(hydroxamic acid) chelating resin (TiO2-PHA) was assessed with various   parameters including effect of pH, contact times, initial As(V) concentrations, temperatures and existence of foreign anions.  The loaded resin was tested for removal of arsenic anions from industrial wastewater samples.  The maximum sorption capacity of As(V) was found in acidic conditions at pH 1.5.  Kinetics study shows that As(V) sorption followed the second order kinetic rate  equation  with  the  rate  constant  of  2.9x10-2 g  mg-1min-1   at  room  temperature  and  increase  with increasing temperature.  The sorption capacity of As(V) which increases as temperature increases indicates that the sorption was an endothermic process.  The free energy change, ∆Go  was negative, showing that the sorption of As(V) onto TiO2-PHA resin is spontaneous and thermodynamically favorable.   In addition the values of ∆Ho   are positive, confirming that the sorption process is endothermic in nature. Negative values of ∆So   indicate the increase of order after the sorption of As(V) on the TiO2-PHA.  Sorption isotherm of As(V) by TiO2-PHA could be interpreted by Langmuir equation with sorption capacity 12.72 mg/g at room temperature and increase with increasing temperature.  The selectivity study showed that the sorption of As(V) was affected by the presence of phosphate but not affected by sulphate, chromate, carbonate, bromide and nitrate anions.  The resin was found effective for the removal of arsenic anion in wastewater samples from electronic and wood treatment industries.

 

Keywords: Titanium dioxide-loaded poly(hydroxamic acid), arsenate sorption, thermodynamic,

kinetics, industrial wastewater.

 

References

1.         C.J. Chen (1992) Br. J. Cancer, 66:8888

2.         Y. Zhao, A.I. Zouboulis and K.A. Matis (1996).  Hydrometallurgy 43:143

3.         D. Bhattacharyya, A.B. Jumawan Jr and R.B. Grieves (1979) Sep. Sci. Technol. 14:441

4.         L.  Dambies,  E.  Guibal  and  A.  Roze  (2000)  Arsenic(V)  sorption  on  molybdate-impregnated chitosan beads.  Coll. and Surfaces A 17:19-31

5.         S. Bajpai and M. Chaudhuri (1999) Removal of arsenic from ground water by manganese dioxide- coated sand.  J. Env. Eng. 125(8)782-784

6.         P.R.  Grossl,  M.  Eick,  D.L.  Sparks,  S.  Goldberg  and  C.C.  Ainsworth  (1997)       Arsenate  and Chromate  Retention  Mechanisms  on  Goethite.  2.  Kinetic  Evaluation  Using  a  Pressure-Jump Relaxation Technique, Environ. Sci. Technol. 31:321-326.

7.         S.K. Gupta and K.Y. Shen (1978)  Arsenic removal by adsorption.  J. Wat. Pollut. Control Fed. 497-436

8.         S. Tokunaga, S.A. Wasay and  S.W. Park (1997)  Wat. Sci. Tech.  35: 71-78

9.         H. Imai, J. Nomura, Y. Ishibashi and T. Konishi (1987)  Anion adsorption behavior of rare earth oxide hydrates. Rare Earth 5:807

10.      T.M. Suzuki, J.O. Bomani, H. Matsunaga, T. Yokoyama  (1997) Chem. Lett. 1119

11.      D.A. White & Răutiu R. (1997)  The sorption of anionic species on hydrous tin dioxide.  Chemical Engineering Journal 66(2)85-89

12.      P.K. Dutta, A.K. Ray, V.K. Sharma and F.J. Millero (2004)  Adsorption of arsenate and arsenite on titanium dioxide suspensions. J. Coll. Interfaces Sci. 278:270-275

13.      S. Bang, M. Patel, L. Lippincott and X. Meng (2005) Removal of arsenic from ground water by granular titanium dioxide adsorbent.  Chemosphere 60: 389-397

14.      K. Esumi, H. Toyoda, T. Suhara and H. Sukui (1998) Colloid and Surfaces A, 145:145

15.      T.M. Suzuki, Bomani, J.O., Matsunaga, H. Yakoyama, T. (2000)   Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic. Reactive and Functional Polymers 43:165-172

16.      T. Balaji and H. Matsunaga (2000) Adsorption characteristics of As(III) and As(V) with titanium dioxide loaded Amberlite XAD-7 resin.  Anal. Sci. 18:1345-1347

17.      R.J. Phillips and J.S. fritz (1980)  Synthesis and analytical properties of an N-phenyl hydroxamic acid resin.  Anal. Chim. Acta.  121: 225-232

18.      M. J. Haron, W.M.Z. Wan.Yunus, M.Z. Desa and A. Kassim (1994).  Synthesis and properties of poly(hydroxamic acid) from cross linked poly(methacrylate).  Talanta 41(5) 805-807

19.      A.E. Martell and R.M. Smith (eds) (1979)  Critical Stability Constants, Plenum Press, N.Y., 4:133

20.      H. Yang, W.Y. Lin and K. Rajeshwar (1999)  Homogeneous and heterogeneous photo catalytic reactions involving As(III) and As(V) species in aqueous media.  J. Photochemical. Photobiol A: 123: 137-143

21.      M.K. Smulski (2002)  The significance of difference in the point of zero charge between rutile and anatase.  Adv. Coll. Interf. Sci. 99:255-264

22.      C.H. Weng, J.H. Wang and C.P. Huang (1997)   Adsorption of Cr(VI) onto TiO2      from dilute aqueous solutions.  Water Sci. Technol. 35(7) 55-62

23.      L. Zhu, X. Ren and S. Yu  ((1998)  Use of cetyltrimethylammonium bromide-bentonite to remove organic contaminants of  varying polar character from water, Environ. Sci. Technol 32:3374

24.      J.I. Huh, D.I. Song and Y.W. Jeon (2000)   Sorption of phenols and alkylphenols from aqueous solution onto organically modified montmorillonite and applications of dual-model sorption model, Sep. Sci. Technol. 35:243

25.      M.A.  Rauf,  S.M.  Hasany,  M.  Ikram  and  N.  Din  (1995)         Adsorption  studies  of  arsenic  on manganese dioxide using radiometric technique.  Ads. Sci. Technol. 12:93-100 




Previous                    Content                    Next