The Malaysian Journal of Analytical Sciences Vol 10 No 2 (2006): 233 – 242

 

 

KESAN AKTIVITI PENANAMAN PADI TERHADAP KUALITI AIR

 

Mohd Rozali Othman 1, Mohd Talib Hj. Latif 2, Abdullah Samat2, Muhamad Sanusi Sulaiman 3

 

1 Program Kimia, Pusat Pengajian Sains Kimia dan Teknologi Makanan,

2 Program Sains Sekitaran, Pusat Pengajian Sains Sekitaran dan Sumber Alam,

Fakulti Sains dan Teknologi, Universiti Kabangsaan Malaysia,

 43600 UKM Bangi, Selangor Darul Ehsan, MALAYSIA

3 Jabatan Alam Sekitar, Aras 3 - 7, Blok C4, Pusat Pentadbiran Kerajaan Persekutuan ,

62662 Putrajaya.

 

Abstract

A study on impact of padi plantation activities on water quality was carried out at Sungai Burung, Tanjung Karang, Selangor at a total of eleven stations located at water inlet, in the padi field area, outlet an at irrigation channel before joining with other domestic waste water. Selected water quality parameters namely temperature, pH, dissolved oxygen, biological oxygen demand (BOD), chemical  oxygen demand (COD), suspended solid, phosphate, nitrate, sulfate, sulfide, ammoniacal nitrogen and heavy metals (cadmium, lead and zink) were chose. Results show that there are an increase in some  parameters when the water passed the padi fields, while temperature and turbidity were decreases, however its differences was not significant.

 

Keywords: agriculture, discharge, water quality

 

Rujukan

1.         I. Jalaludin, 1990. Alam sekitar, gambaran masa kini kemungkinan masa hadapan. Sekitar 6 (Mei): 11 - 30.

2.         Jabatan Alam Sekitar Malaysia, 1995. Environmental Quality Report, Departmenrt of Environment, Ministry of Science, Technology and the Environment Malaysia, Kuala Lumpur

3.         M.A. Badri, S.R. Aston, 1987. Observation on heavy metal geochemical associations in polluted and non-polluted estuarine sediments. Anviron. Pollut. (series B) 6: 181 – 193.

4.         Jabatan Alam Sekitar Malaysia, 1990. Environmental Quality Report, Departmenrt of Environment, Ministry of Science, Technology and the Environment Malaysia, Kuala Lumpur.

5.         J.C. Lamb, 1985. Water Quality and its Control, John Wiley & Sons Inc., New York.

6.         D. Catling, 1992. Rice in Deep Water, 1st. Ed., The Macmillan Press Ltd., London.

7.         Harrison, R.M. 1979. Toxic metals in street and household dusts. Sci. Total Environ. 11: 89-97.

8.         M.L. Davis, D.A. Cornwell, 1991. Introduction To Environmental Engineering, McGraw Hill International Ed., Chemical Engineering Series 2nd. Ed. Singapore.

9.         American  Public  Health  Association  (APHA),  1992.  Standard  Methods  for  the  Examination  of  Water  and Wastewater. 18th. Ed.. Washington: APHA, AWWA and AWPFC.

10.      American  Public  Health  Association  (APHA),  1995.  Standard  Methods  for  the  Examination  of  Water  and Wastewater. 19th. Ed.. Washington: APHA, AWWA and AWPFC.

11.      Hach,  1993.  DR/2000  Spectrophotometer  Instruments  manual  for  use  with  software  version  3,  USA,  Hach Company

12.      Global Environmental Monitoring System (GEMS), 1978.   GEMS Water Operational Guide,  United Nation Environmental Programme, Geneva.

13.      Mohd  Rozali  Othman,  Khadijah  binti  Khalid,  William  Kimsoi,  Chan  Mei  Fong,  Ridzwan  Hashim,  1990. Kandungan logam-logam berat dalam zarahan terampai di udara. Sumber 6: 45 – 56.

14.      G.R. Smart, 1981. Aspect of water quality producing stress in intensive fish culture. In A.D. Pickering  (ed). Stress and Fish, Academic Press, London, 277 - 293.

15.      D. Chapman, 1992. Water quality assessment. A guide to the use of biota, sediments and water in environmental monitoring. Chapman and Hall. London.

16.      A.B. Bakar, D. Hashim, 1980. Water Pollution Control: Aliterature review: Toxicity limit and  water quality criteria, Jatatan Alam Sekitar, Malaysia, 29 pp.

17.      R.P. Gambrell, J.W. Gilliam, S.B. Weed, 1975. Nitrogen lossses from North Carolina Coastal plain. J. Environ. Quality 4: 317 – 323.

18.      S. Mosthaghimi, P.W. McClellan, R.A. Cooke, 1993. Pesticides contamination of groundwater in Virginia: BMP impact assessment. Water Sci. Technol. 28: 379 – 387.

19.      C.P. Huang, H.W. Wang, P.C. Chiu, 1998. Nitrate reduction by metallic iron, Wat. Res., 32, 2257 – 2264.

20.      World  Health  Organisation  (WHO),  1998.  Nitrate  and  nitrite.  Guideline  for  drinking-water  quality.  1st.  Ed. Recommendations, Geneva.

             http://www.who.int/water_sanitation_health/GDWQ/Chemicals/nitratenitritesum.htm (24 Mac 2001)

21.      H.P.L. Willems, M.D. Rotelli, D.F. Berry, E.P. Smith, R.B. Reneau Jr. and S. Mostghimi, 1997, Nitrate removal in Riparian Wetlands Soilds: Effects of flow rate, temperature, nitrate concentration and soil depth. Water Res. 4: 841 – 849.

22.      World Health Organisation (WHO), 1998. Nitrate and nitrite. Guideline for drinking-water  quality.  2nd.  Ed. Recommendations, Geneva. 

            http://www.who.int/water_sanitation_health/GDWQ/Chemicals/nitratenitritesum.htm (24 Mac 2001).

23.      R. Gachter, J.M. Ngatiah, C. Stamm, 1998. Transport of phosphate from soil to surface waters by preferential flow. Environ. Sci. Technol. 32: 1865 – 1869.




Previous                    Content                    Next